Ядерное оружие. Ядерное оружие — оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии

ЯДЕРНОЕ ОРУЖИЕ, в отличие от обычного оружия, оказывает разрушающее действие за счет ядерной, а не механической или химической энергии. По разрушительной мощи только взрывной волны одна единица ядерного оружия может превосходить тысячи обычных бомб и артиллерийских снарядов. Кроме того, ядерный взрыв оказывает на все живое губительное тепловое и радиационное действие, причем иногда на больших площадях.
Также по теме:

ВОЙНА ЯДЕРНАЯ

Испытания ядерного оружия впервые были проведены на Аламогордской базе ВВС, расположенной в пустынной части шт. Нью-Мексико. Плутониевое ядерное устройство, установленное на стальной башне, было успешно взорвано 16 июля 1945. Энергия взрыва приблизительно соответствовала 20 кт тротила. При взрыве образовалось грибовидное облако, башня обратилась в пар, а характерный для пустыни грунт под ней расплавился, превратившись в сильно радиоактивное стеклообразное вещество. (Через 16 лет после взрыва уровень радиоактивности в этом месте все еще был выше нормы.) Информация об удачном опытном взрыве сохранялась в тайне от общественности, но была передана президенту Г.Трумэну, который в то время находился в Потсдаме на переговорах о послевоенном устройстве Германии. Проинформированы были также У.Черчилль и И.Сталин.

Также по теме:

ВОДОРОДНАЯ БОМБА

В это время велась подготовка к вторжению войск союзников в Японию. Чтобы обойтись без вторжения и избежать связанных с ним потерь – сотен тысяч жизней военнослужащих союзных войск, – 26 июля 1945 президент Трумэн из Потсдама предъявил ультиматум Японии: либо безоговорочная капитуляция, либо «быстрое и полное уничтожение». Японское правительство не ответило на ультиматум, и президент отдал приказ сбросить атомные бомбы.

6 августа самолет B-29 «Энола-Гэй», поднявшийся в воздух с базы на Марианских островах, сбросил на Хиросиму бомбу из урана-235 мощностью ок. 20 кт. Большой город состоял в основном из легких деревянных построек, но в нем было много и железобетонных зданий. Бомба, взорвавшаяся на высоте 560 м, опустошила зону площадью ок. 10 кв. км. Были разрушены практически все деревянные строения и многие даже самые прочные дома. Пожары нанесли городу непоправимый ущерб. Было убито и ранено 140 тыс. человек из 255-тысячного населения города.

Японское правительство и после этого не сделало недвусмысленного заявления о капитуляции, и поэтому 9 августа была сброшена вторая бомба – на этот раз на Нагасаки. Людские потери, хотя и не такие, как в Хиросиме, были тем не менее огромны. Вторая бомба убедила японцев в невозможности сопротивления, и император Хирохито предпринял шаги в направлении капитуляции Японии.

В октябре 1945 президент Трумэн законодательным порядком передал ядерные исследования под гражданский контроль. Законопроектом, принятым в августе 1946, была учреждена комиссия по атомной энергии из пяти членов, назначаемых президентом США.

Эта комиссия прекратила свою деятельность 11 октября 1974, когда президент Дж.Форд создал комиссию по ядерной регламентации и управление по энергетическим исследованиям и разработкам, причем на последнее возлагалась ответственность за дальнейшие разработки ядерного оружия. В 1977 было создано министерство энергетики США, которое должно было контролировать научные исследования и разработки в области ядерного оружия.

В 1956 было создано Международное агентство по атомной энергии (МАГАТЭ). В 1970, когда был заключен договор о нераспространении ядерного оружия, МАГАТЭ взяло на себя дополнительную важную функцию – контролировать выполнение названного договора его участниками, не входящими в число ядерных держав. Примерно треть ресурсов МАГАТЭ идет на деятельность, связанную с таким контролем, а другие две трети – на помощь и кооперацию в разработках и обеспечении безопасности энергетики, а также на другие мирные ядерные программы.

В 1958 было создано Европейское сообщество по атомной энергии (Евратом), тоже для контроля за применением ядерной энергии в мирных целях. Первоначально его членами были Франция, Италия, Нидерланды, Люксембург и ФРГ. В 1973 в него вошли также Великобритания, Ирландия и Дания, в 1981 – Греция, в 1986 – Испания и Португалия и в 1995 – Австрия, Швеция и Финляндия.

ПОСЛЕВОЕННЫЕ РАЗРАБОТКИ ОРУЖИЯ

После 1945 дальнейшее развитие в области ядерного оружия шло в двух основных направлениях: усовершенствование оружия, созданного в период Второй мировой войны, и создание термоядерного оружия.

Бомба, взорванная над Хиросимой, была изготовлена из урана-235, а по конструкции относилась к т.н. орудийному типу. В бомбах такого типа делящийся материал состоит из двух частей, расположенных в противоположных концах орудийного ствола. Масса каждой из этих двух половин – докритическая. Одна из них называется мишенью, другая – снарядом. Чтобы бомба взорвалась, производится детонация неядерного взрывного заряда, в результате чего снаряд выстреливается в мишень. Образуется критическая масса, что приводит к ядерному взрыву.

В бомбе имплозионной конструкции, сброшенной на Нагасаки, требуется меньше делящегося материала для заданной мощности взрыва, она меньше по размерам; мощность оружия можно изменять соответственно типу носителя. В результате параллельных разработок были созданы ядерные артиллерийские снаряды.

Популярные темы сообщений

  • Вулканы России
    Вулканы всегда имели вид куполовидного возвышения, которое образовывалось в тех местах земной коры, где есть трещины. Любой вулкан состоит из канала, через который периодами извергаются наружу горные породы, лава и пепел. Ученые считают,
  • Древний Рим
    Древний Рим, государство расположенное около реки Тибр. Возникло в 8 веке до нашей эры. Сначала были захвачены Аленинский полуостров, затем включилась западная и юго-восточная части Европы. А также Малая Азия,
  • Гиена
    Гиена-представитель хищников, относящийся к отряду кошкообразных. Ранее ученые-биологи относили их к представителям псовых, считая их сородичами собак. Однако впоследствии была доказана близость гиен к кошкам.

Водородная бомба.

Поскольку масса каждого заряда урана или плутония в бомбе, основанной на делении ядер, должна быть докритической, мощность атомной бомбы можно наращивать, только увеличивая число зарядов. Таким образом, с повышением мощности бомбы она быстро растет в размерах и в конце концов становится нетранспортабельной. Поэтому исследователи, работавшие в области ядерного оружия, обратились к реакции термоядерного синтеза как возможному источнику энергии взрыва (см. также ЯДЕРНЫЙ СИНТЕЗ). Термоядерную («водородную») бомбу в принципе можно сделать любых размеров.

Соответствующие исследования в США вначале почти не получили поддержки, и до 1950 разработки и испытания практически не проводились. Лишь некоторые ученые, в частности Э.Теллер, продолжали заниматься этим вопросом и совершенствовали теорию, на которой могли основываться испытания.

Советский Союз взорвал свою первую атомную бомбу в 1949. Президент Трумэн 13 января 1951 распорядился ускорить разработку водородной бомбы. В ноябре 1952 в США было взорвано нетранспортабельное термоядерное устройство. Это был первый термоядерный взрыв, мощность его составила несколько мегатонн тротилового эквивалента. В 1953 о взрыве своей термоядерной бомбы объявило советское правительство.

Оружие повышенной радиации.

Оружие повышенной радиации по проникающей радиации не уступает атомному (основанному на делении), которое оно призвано заменить, но выделяет значительно меньше тепла, создает более слабую ударную волну и меньше радиоактивных осадков. Такая «нейтронная бомба» (на самом деле не бомба, а артиллерийский снаряд), уничтожающая живую силу, представляет собой тактическое оружие, рассчитанное на применение против бронетехники на малых полях сражения. Нейтронная бомба была испытана в США, Франции, Советском Союзе и, вероятно, в КНР, но, по-видимому, не была принята на вооружение. См. также ЯДЕР ДЕЛЕНИЕ; ЯДЕРНЫЙ СИНТЕЗ.

ИСПЫТАНИЯ

Ядерные испытания проводятся в целях общего исследования ядерных реакций, совершенствования оружейной техники, проверки новых средств доставки, а также надежности и безопасности методов хранения и обслуживания оружия. Одна из главных проблем при проведении испытаний связана с необходимостью обеспечения безопасности. При всей важности вопросов защиты от прямого воздействия ударной волны, нагрева и светового излучения первостепенное значение имеет все-таки проблема радиоактивных осадков. Пока что не создано «чистого» ядерного оружия, не приводящего к выпадению радиоактивных осадков.

Испытания ядерного оружия могут проводиться в космосе, в атмосфере, на воде или на суше, под землей или под водой. Если они проводятся над землей или над водой, то в атмосферу вносится облако мелкой радиоактивной пыли, которая затем широко рассеивается. При испытаниях в атмосфере образуется зона долго сохраняющейся остаточной радиоактивности. Соединенные Штаты, Великобритания и Советский Союз отказались от атмосферных испытаний, ратифицировав в 1963 договор о запрещении ядерных испытаний в трех средах. Франция последний раз провела атмосферное испытание в 1974. Самое последнее испытание в атмосфере было проведено в КНР в 1980. После этого все испытания проводились под землей, а Францией – под океанским дном.

ДОГОВОРЫ И СОГЛАШЕНИЯ

В 1958 Соединенные Штаты и Советский Союз договорились о моратории на испытания в атмосфере. Тем не менее СССР возобновил испытания в 1961, а США – в 1962. В 1963 комиссия ООН по разоружению подготовила договор о запрещении ядерных испытаний в трех средах: атмосфере, космическом пространстве и под водой. Договор ратифицировали Соединенные Штаты, Советский Союз, Великобритания и свыше 100 других государств-членов ООН. (Франция и КНР тогда его не подписали.)

В 1968 был открыт к подписанию договор о нераспространении ядерного оружия, подготовленный тоже комиссией ООН по разоружению. К середине 1990-х годов его ратифицировали все пять ядерных держав, а всего подписали 181 государство. В число 13 не подписавших входили Израиль, Индия, Пакистан и Бразилия. Договор о нераспространении ядерного оружия запрещает владеть ядерным оружием всем странам, кроме пяти ядерных держав (Великобритании, КНР, России, Соединенных Штатов и Франции). В 1995 этот договор был продлен на неопределенный срок.

Среди двусторонних соглашений, заключенных между США и СССР, были договоры об ограничении стратегических вооружений (ОСВ-I в 1972, ОСВ-II в 1979), об ограничении подземных испытаний ядерного оружия (1974) и о подземных ядерных взрывах в мирных целях (1976).

В конце 1980-х годов упор был перенесен со сдерживания роста вооружений и ограничения ядерных испытаний на сокращение ядерных арсеналов сверхдержав. Договор о ядерных вооружениях средней и меньшей дальности, подписанный в 1987, обязывал обе державы ликвидировать свои запасы ядерных ракет наземного базирования с дальностью 500–5500 км. Переговоры между США и СССР о сокращении наступательных вооружений (СНВ), проводившиеся как продолжение переговоров ОСВ, завершились в июле 1991 заключением договора (СНВ-1), по которому обе стороны согласились сократить примерно на 30% свои запасы ядерных баллистических ракет большой дальности. В мае 1992, когда распался Советский Союз, США подписали соглашение (т.н. Лиссабонский протокол) с бывшими республиками СССР, владевшими ядерным оружием, – Россией, Украиной, Белоруссией и Казахстаном, – в соответствии с которым все стороны обязаны выполнять договор СНВ-1. Был также подписан договор СНВ-2 между Россией и США. Им устанавливается предельное число боеголовок для каждой из сторон, равное 3500. Сенат США ратифицировал этот договор в 1996.

Договором по Антарктике от 1959 был введен принцип безъядерной зоны. С 1967 вошел в силу договор о запрещении ядерного оружия в Латинской Америке (Тлателолькский договор), а также договор о мирном исследовании и использовании космического пространства. Велись переговоры и о других безъядерных зонах.

РАЗРАБОТКИ В ДРУГИХ СТРАНАХ

Советский Союз взорвал свою первую атомную бомбу в 1949, а термоядерную – в 1953. В арсеналах СССР имелось тактическое и стратегическое ядерное оружие, в том числе совершенные системы доставки. После распада СССР в декабре 1991 российский президент Б.Ельцин стал добиваться того, чтобы ядерное оружие, размещенное на Украине, в Белоруссии и Казахстане, было перевезено для ликвидации или хранения в Россию. Всего к июню 1996 было приведено в неработоспособное состояние 2700 боеголовок в Белоруссии, Казахстане и Украине, а также 1000 – в России.

В 1952 Великобритания взорвала свою первую атомную бомбу, а в 1957 – водородную. Эта страна полагается на небольшой стратегический арсенал баллистических ракет подводного базирования БРПЛ (т.е. запускаемых с подлодок), а также на использование (до 1998) авиационных средств доставки.

Франция провела испытания ядерного оружия в пустыне Сахара в 1960, а термоядерного – в 1968. До начала 1990-х годов французский арсенал тактического ядерного оружия состоял из баллистических ракет малой дальности и ядерных бомб, доставляемых самолетами. Стратегические вооружения Франции – это баллистические ракеты промежуточной дальности и БРПЛ, а также ядерные бомбардировщики. В 1992 Франция приостановила проведение испытаний ядерного оружия, но в 1995 возобновила их – для модернизации боеголовок ракет подводного базирования. В марте 1996 французское правительство объявило, что полигон для запуска стратегических баллистических ракет, расположенный на плато д’Альбион в центральной Франции, будет поэтапно ликвидирован.

КНР в 1964 стала пятой ядерной державой, а в 1967 взорвала термоядерное устройство. Стратегический арсенал КНР состоит из ядерных бомбардировщиков и баллистических ракет промежуточной дальности, а тактический – из баллистических ракет средней дальности. В начале 1990-х годов КНР дополнила свой стратегический арсенал баллистическими ракетами подводного базирования. После апреля 1996 КНР оставалась единственной ядерной державой, не прекратившей ядерных испытаний.

Ядерная эра. Часть 10-я

Ядерное оружие и ядерная энергетика со второй половины XX века стали неотъемлемой частью культурной, военной и технологической сфер жизнедеятельности человеческой цивилизации. По мере освоения ядерных технологий и создания новых видов ядерных вооружений менялось отношение к ним в среде обывателей, политических и общественных деятелей, военных, учёных и инженеров.

Появившись как «супероружие» в 1945 году в США, атомная бомба практически сразу превратилась в инструмент политического давления на Советский Союз. Однако после появления ядерного оружия в СССР, накопления запасов и миниатюризации ядерных зарядов, оно, наряду с сохранением стратегических задач, стало рассматриваться как средство поля боя. Сначала в США, а потом и в СССР появились тактические ракетные комплексы и артиллерийские снаряды с «ядерной начинкой». Ядерными боевыми частями оснащались зенитные и авиационные ракеты, торпеды и глубинные бомбы, для создания труднопреодолимых препятствий на пути наступления войск противника разрабатывались ядерные фугасы.

Количество ядерных боеголовок в США и СССР/России

В 60-е годы прошлого столетия межконтинентальные баллистические ракеты стали основным средством решения стратегических задач, сменив в этой роли дальние бомбардировщики. В годы противостояния двух мировых систем накопление количества ядерных боеголовок и средств их доставки продолжалось до второй половины 80-х годов. Их резкое сокращение произошло после распада СССР и формального окончания «холодной войны». Однако полной ликвидации ядерного оружия, несмотря на предсказания некоторых «гуманистов-идеалистов» в XXI веке не произошло. Более того, его роль в обеспечении обороноспособности нашей страны в годы упадка и бесконечного «реформирования» российской армии даже возросла. Наличие у России ядерного оружия во многом удерживало наших западных и восточных «партнёров» от попыток силового решения политических и территориальных споров. Кроме стратегического сдерживающего фактора российской ядерной триады, свою роль играло и играет тактическое ядерное оружие, во многом обесценивающее превосходство в области обычных вооружений НАТО и НОАК КНР. Не случайно руководство Соединенных Штатов неоднократно поднимало вопрос о российском тактическом ядерном оружие, предлагая обнародовать данные о его местах дислокации, точном количественном и качественном составе, а так же заключить договор о взаимной ликвидации ТЯО.

В настоящее время в мире в распоряжении официальных и неофициальных членов «ядерного клуба» имеется количество расщепляющихся и делящихся материалов достаточное для создания 15000 ядерных зарядов. Около 5000 ядерных боевых частей оперативно развёрнуты на носителях, или могут быть подготовлены к применению в течение нескольких суток. По оценкам Federation Of American Scientists только в вооруженных силах России по состоянию на начало 2015 года имелось примерно 1800 развёрнутых зарядов. Около 700 стратегических боезарядов находятся в хранилищах отдельно от носителей. Число ядерных зарядов, ожидающих своей очереди на утилизацию, оценивается в 3200 единиц. Хотя эти боеголовки по большей части уже не пригодны для боевого применения, содержащиеся в них ядерные материалы после переработки, могут быть использованы для создания новых зарядов. В арсеналах США и России находится примерно 90% всех мировых запасов ядерного оружия.

Ярким примером тому служат такие страны как Иран и КНДР. Если иранскую ядерную программу, по крайней мере, формально, благодаря усилиям международной дипломатии, удалось перевести в мирную плоскость, то Северная Корея из-за чрезмерного давления США, Японии и Южной Кореи наоборот демонстрирует несговорчивость. По всей видимости, негативным примером для руководства КНДР является судьба лидеров Ирака и Ливии, которые в своё время по ряду причин отказались от создания собственного ядерного оружия и в итоге стали жертвами агрессии западных стран.

В разное время ядерные амбиции проявляли: Аргентина, Бразилия, Ливия и Швеция. Эти страны на разных этапах развития собственных ядерных программ отказались от создания атомной бомбы. Ирак был вынужден прекратить разработку ядерного оружия после разрушения израильскими ВВС ядерного реактора «Осирак», поставленного из Франции.

Работы по созданию атомной бомбы в Аргентине велись с 1951 года в период диктатуры Перрона. До начала 70-х были введены в эксплуатацию четыре исследовательских реактора и лабораторная установка по радиохимической переработке облученного ядерного топлива. В 1973 году было получено около 1 кг плутония, но по внешнеполитическим мотивам в 1974 году выработка плутония была прекращена. На тот момент в Аргентине уже имелась необходимая научно-техническая база и производственные мощности по получению тяжелой воды, производству ядерного топлива, обогащению урана, радиохимической переработки отработанного ядерного топлива и выделения плутония.

После прихода к власти военного правительства во главе с генералом Хорхе Редондо в 1978 году было официально объявлено, что в Аргентине ведётся создание атомного оружия. По мнению тогдашнего руководства страны, реализация национальной ядерной программы должна была не только повысить престиж Аргентины, но и обеспечить национальную безопасность в условиях конкуренции с Бразилией за региональное лидерство. В ходе реализации аргентинской оружейной ядерной программы созданы заводы по производству диоксида урана, ядерного топлива и тяжелой воды. Однако, после поражения Аргентины в Фолклендском конфликте к власти пришла гражданская администрация, и начался процесс сотрудничества с Бразилией и подключение Аргентины к международному режиму нераспространения ядерного оружия. После подписания в 1991 году Аргентиной и Бразилией Гвадалахарского соглашения об использовании атомной энергии исключительно в мирных целях произошло свёртывание аргентинской атомной оружейной программы. После этого руководство Аргентины неоднократно декларировало, что создание национального ядерного оружия противоречит интересам государства, но имеющиеся в стране ядерная инфраструктура и квалифицированные кадры позволят осуществить это в достаточно короткий временной промежуток.

В течение достаточно длительного временного периода в Бразилии параллельно с мирными ядерными исследованиями, подконтрольными МАГАТЭ, с 1957 года велась тайная оружейная ядерная программа. Дополнительным стимулом для развития бразильской атомной отрасли стало предание гласности в 1983 году факта завершения строительства в Аргентине ранее засекреченного завода по обогащению урана. В начале 80-х в Бразилии началась промышленная добыча урана и его обогащение. В 1986 году, был получен уран, обогащённый до 20%. Тогда же вступила в строй лабораторная установка по извлечению плутония из ОЯТ.

После завершения периода военного правления и прихода к власти в 1985 году гражданской администрации, так как и в Аргентине, начался постепенный процесс подключения Бразилии к международному режиму нераспространения ядерного оружия. В середине 90-х представители Бразилии официально озвучили существование в 70–80 годы ядерной оружейной программы под кодовым названием «Проект Солимоес». В рамках этой программы для проведения ядерных испытаний в труднодоступном районе страны недалеко от Качимбо (в джунглях Амазонии) была создана 300 метровая шахта, «официально» закрытая президентом Бразилии Ф.К. де Мело 17 сентября 1990 года. На момент подписания 18 июля 1991 года Бразилией и Аргентиной Гвадалахарского соглашения об использовании атомной энергии исключительно в мирных целях в Бразилии представителями ВВС были разработаны конструкции двух ядерных бомб проектной мощностью 12 кт и 20–30 кт, но их сборка не велась.

Так же как и в соседней Аргентине, в Бразилии в данный момент имеется возможность создания собственного ядерного оружия в достаточно короткой временной перспективе. В муниципалитете Резеда (шт. Рио-де Жанейро) в 2006 году запущен завод по обогащению урана. Его производственных мощностей достаточно для производства топливных сборок к легководным реакторам мощностью 1000 МВт, или для создания приблизительно 30 урановых ядерных зарядов в год. Бразильские специалисты имеют необходимую квалификацию и в их распоряжении есть отработанные ядерные технологии для всех ключевых звеньев ядерного топливного цикла. В случае принятия соответствующего решения руководством страны в Бразилии есть возможность сравнительно быстро приступить к наработке расщепляющихся материалов высокой степени обогащения с последующим изготовлением на их основе ядерных взрывных устройств.

Вскоре после прихода к власти 1970 году лидер ливийской революции М. Каддафи начал проявлять ядерные амбиции. Так как в стране отсутствовала необходимая научная и производственная база, он обратился за помощью в деле создания атомной бомбы сначала к Китаю, а затем к СССР. Но эти обращения не встретили понимания. В 1975 году Ливия присоединилась к ДНЯО, после чего в 1977 году Советский Союз помог с созданием исследовательской лаборатории и поставил в 1981 году вместе с высокообогащённым ураном исследовательский легководный реактор мощностью 10 МВт.

Но создать собственными силами в обозримой перспективе атомную бомбу Ливия не могла. Попытки приобрести в СССР тяжеловодный реактор, оборудование по производству тяжелой воды, линию по радиохимической переработке облученного ядерного топлива, не смотря на предложенные 10 млрд. долл в конце 70-х, успеха не имели. Из-за противодействия США оказались сорваны сделки с бельгийскими и германскими компаниями. В итоге Ливия предложила значительную финансовую помощь Пакистану в надежде обрести «исламскую ядерную бомбу». Не имея возможности закупить необходимое оборудование и материалы легально, Ливия обратилась к ядерных технологий. По признанию «отца» пакистанской ядерной бомбы Абдул Кадыр Хана через нелегальную сеть, созданную им, в Ливию было поставлено 20 центрифуг для обогащения урана и техническая документация по конструкции ядерного заряда. Одновременно ливийские представители осуществляли нелегальные закупки урана.

Однако слабость ливийской научной и технологической базы и международные санкции не позволили Ливии серьезно продвинуться в производстве оружейных расщепляющихся материалов. В 2003 году Ливия в обмен на обещание снятия санкций объявила об отказе от реализации программы создания ядерного оружия. Инспекции МАГАТЭ, последовавшие за этим, подтвердили отсутствие возможности производства в Ливии оружейных ядерных материалов. Имеющиеся специальное оборудование и материалы, нарушающие режим нераспространения, были вывезены из страны. Чем это в итоге закончилось для М. Каддафи, мы все знаем.

Вскоре после ядерных бомбардировок Японии по инициативе военно-политического руководства Швеции в стране начались исследования по ядерной тематике. В 1946 году все работы в этой области были сконцентрированы в Шведском национальном центре оборонных исследований. Первоначально целью исследований было выяснить, каким образом Швеция сможет защитить себя от нападения с применением ядерного оружия. В итоге руководство шведскими вооружёнными силами пришло к мнению, что лучшей защитой от агрессии будет обладание собственной атомной бомбой.

В конце 40-х годов Швеция предприняла ряд попыток получить доступ к американским ядерным секретам, включая технологию обогащения урана, но получила вежливый отказ. После этого шведское руководство попыталось попросту купить в США готовые ядерные боезаряды. В 1955 году был даже озвучен предполагаемый объём закупки – 25 ядерных бомб.

Американцы согласились пойти на встречу, но с двумя принципиальными условиями. Одним из них было сохранение американского контроля над шведскими ядерными зарядами, согласно другому – Швеция должна была заключить с США договор об обороне и отказаться от нейтралитета. Оба эти условия были неприемлемы для правительства Швеции и сделка не состоялась. После срыва ядерного соглашения с США шведское руководство решило создавать атомную бомбу самостоятельно. Надо сказать, что для этого в Швеции имелось всё необходимое – научная, лабораторная, производственная и сырьевая базы.

Национальная программа производства ядерного оружия «Шведская линия» предусматривала создание 100 плутониевых авиабомб весом 400-500 кг и мощностью 20 кт. Для этого в Кварнторпе и Ранстаде были построены заводы по обогащению урана, а в Стокгольме в 1954 году был запущен первый тяжеловодный ядерный реактор. Тяжелая вода для реактора импортировалась из Норвегии.

После подписания двустороннего соглашения о сотрудничестве с США в области гражданского использования ядерной энергии в рамках американской программы «Мирный атом», в 1956 году был поставлен исследовательский реактор R-2. Кроме того у Швеции появилась возможность доступа к американским исследованиям в области атомной энергетики. Из США начал поступать в небольших количествах обогащённый уран и тяжёлая вода по ценам, меньшим, чем из Норвегии. При этом соглашением отдельно оговаривалось то, что Швеция не может использовать информацию и материалы, полученные от американцев, для создания ядерного оружия.

В 60-е годы ядерные исследования в Швеции продвинулись достаточно далеко, в этом серьёзно помог импортированный из США полупроводниковый компьютер IBM 7090. В 1964 году начал функционировать реактор «Аgesta», самостоятельно созданный в Швеции. Этот реактор с тепловой мощностью 68 МВт мог нарабатывать до 2 кг плутония в месяц, что уже открывало реальные возможности по созданию ядерного оружия. Ещё большие объемы плутония планировалось получать на строящемся реакторе в Марвикене, но этот реактор в виду отказа от создания ядерного оружия так и не был запущен.

Во второй половине 60-х ядерная программа Швеции продвинулась настолько, что позволяла в сравнительно короткие сроки наработать необходимое количество оружейного плутония и приступить к сборке ядерных взрывных устройств. К тому моменту с использованием значительных объёмов обычной взрывчатки в бассейне реки Наусты уже была отработана методика ядерных испытаний и для проведения подземных испытаний на нагорье Хьёлен в Лапландии подобрано место для строительства штолен. Для начала сборки ядерного заряда и проведения испытаний не хватало только политического решения руководства страны.

Правительство Швеции понимало, что создание и содержание ядерного арсенала ляжет тяжким бременем на экономику. Кроме того ядерный статус страны в случае конфликта между НАТО и Варшавским Договором мог привести к нанесению Советским Союзом превентивного ядерного удара по Швеции. В связи с этим в самой Швеции росли протестные антиядерные настроения. В 1968 году Швеция присоединилась к ДНЯО, а 9 января 1970 года ратифицировало его. Однако работы по оружейной программе были окончательно свёрнуты только в 1974 году. В последнее время Швеция не проявляет интереса к обладанию ядерным оружием, но научный и производственный потенциал страны позволяют в достаточно короткие сроки создать вполне современные виды ядерных боеприпасов.

Отдельного упоминания заслуживает иранская ядерная программа. В 50-60-е годы прошлого века иранский шах Реза Пехлеви предпринял попытку перестроить жизнь в стране на европейский лад. В 1957 году Иран присоединился к американской программе Атом для мира и вступил в МАГАТЭ. В 1967 году в Тегеранском ядерном научно-исследовательском центре начал работу поставленный из США исследовательский реактор. В 70-е годы Иран приобрел технологическое оборудование для обогащения урана и производства топливных элементов и начал реализацию программы в области ядерной энергетики.

Исламская революция 1979 года серьёзно затормозила работы в этой области, из страны выехали не только все иностранные специалисты, но и многие иранские физики и инженеры. В 80-е годы Иранская ядерная программа, получившая оружейную направленность, начала осуществляться при помощи КНР и Пакистана. Во второй половине 80-х в Исфахане на базе поставленного из КНР реактора начал работу исследовательский ядерный центр. Однако заключённое с Китаем соглашение о строительстве там же легководных реакторов под давлением США было аннулировано.

В 90-е годы Иран нелегально получил от Пакистана центрифуги для обогащения урана и пакет технической документации. Точная дата начала обогащения урана в Иране не известна, но в Фордо недалеко от города Кум в скальных породах на глубине 80-90 метров в 2012 году функционировала производственная линия из примерно 2000 центрифуг. Первые неучтённые иранские центрифуги инспекторы МАГАТЭ обнаружили в Иране в 2004 году. После того как 2005 году президентом Исламской республики Иран стал Махмуд Ахмадинежад позиция страны по ядерной проблематике ужесточилась. Иранские представители на международных переговорах настаивали на необходимости создания у себя полного комплекса обогащения и переработки отработанного ядерного топлива. Россия выступила с инициативой производить обогащение иранского урана и перерабатывать отработанные материалы с АЭС в Бушере на своих предприятиях. Это исключало бы возможность извлечения оружейного плутония из отработанного на АЭС топлива.

Снимок Google earth: АЭС в Бушере

После того как международные переговоры с участием Франции, Германии и Великобритании, США, России и КНР зашли в тупик совбез ООН принял шесть резолюций с требованиями к Ирану прекратить обогащение и переработку урана, из них четыре резолюции предусматривали введение и ужесточение санкций в отношении этой страны.

Несмотря на введенные международные санкции, Иран не пошел на уступки. Более того, в 2006 году были введены в строй мощности по производству тяжелой воды, а в 2009 было ограниченно сотрудничество с МАГАТЭ и объявлено о планах строительства в стране десяти новых предприятий по обогащению урана. В 2010 году Махмуд Ахмадинежад заявил, что в ядерном центре в Натанзе получена первая партия обогащенного до 20% урана, и что в стране имеется возможность для производства урана с более высокой степенью обогащения. Во второй половине 2011 года эксперты МАГАТЭ выдали заключение, что в ИРИ наращиваются производственные мощности по обогащению урана и ведутся работы, которые можно трактовать как производство ядерного оружия. В апреле 2013 года Иран обнародовал 15-летнюю программу строительства каскада из 16 АЭС.

К 2010 году в ИРИ был сформирован комплекс исследовательских и лабораторных центров, фабрик по добыче и обогащению урана. Ядерная отрасль Ирана опирается на рудники в Саганде и Гачине, предприятия по обогащению урана в Фордо и в Эрдекане, ядерные центры в Исфахане, Тегеране, Натанзе и Парчине. По оценкам МАГАТЭ Иран, при сохранении темпов обогащения урана на уровне 2013 года, к 2022 году мог иметь несколько урановых ядерных зарядов.

Напряженность, связанная с иранской ядерной программой начала снижаться в конце 2013 года, после того как Хасан Роухани сменил Махмуда Ахмадинежада на посту президента страны. На переговорах в Женеве удалось принять совместный план действий, в соответствии с которым Иран взял на себя обязательство прекратить обогащение урана свыше 5% и уничтожить все запасы обогащенных выше этого порога ядерных материалов, а так же прекратить строительство новых производственных мощностей по обогащению урана. В ответ были ослаблены санкции против ИРИ, серьезно препятствовавшие развитию иранской экономики. Соглашение сроком на полгода вступило в силу 20 января 2014 года, впоследствии срок его действия был дважды продлен — сначала до 24 ноября 2014 года, затем до 30 июня 2015 года. После проведения инспекций иранских ядерных предприятий и положительного заключения МАГАТЭ международные санкции в отношении Ирана в январе 2016 года были сняты.

Одновременно с ядерной в Иране реализовывалась ракетная программа. Первые баллистические ракеты, представляющие собой северокорейские копии советской Р-17, появились в ИРИ во второй половине 80-х. Они активно использовались на заключающем этапе ирано-иракской войны для нанесения ударов по иракским городам. В 90-е годы сотрудничество Ирана в ракетной области с КНДР продолжилось. Именно баллистические ракеты должны были стать основным средством доставки иранского ядерного оружия.

На базе полученных из КНДР ракет иранскими специалистами разработаны собственные ракеты класса «земля-земля» семейства «Шехаб». Благодаря увеличенной ёмкости баков с топливом и окислителем и новому северокорейскому двигателю ракета «Шехаб-3», состоящая на вооружении с 2003 года, достигла дальности полёта — 1100—1300 км при весе боевой части — 750—1000 кг.

Запуск иранской баллистической ракеты «Шахаб-3»

В августе 2004 года прошла испытания модернизированная БРСД «Шехаб-3М», иранские специалисты за счёт уменьшения размера головной части ракеты и увеличения мощности ее двигательной установки и ёмкости топливных баков добились дальности пуска 1600 км. Но точность этих иранских ракет невысока (КВО составляет примерно 2,5 км), их эффективное боевое применение возможно только против таких площадных целей, как города противника. Согласно израильским оценкам в ИРИ имеется около 600 БР семейства «Шехаб». Они размещаются как на мобильных шасси, так и в замаскированных ШПУ. На военном параде в сентябре 2007 года была продемонстрирована ракета «Гадр-1» с дальностью стрельбы до 2000 км. Согласно иранским источникам она является дальнейшим вариантом развития «Шехаб-3М».

С использованием двигательных установок ракет, работающих на жидком топливе «Шехаб», создана ракета-носитель «Сафир», её третья ступень является твердотопливной. 2 февраля 2009 года усовершенствованная «Сафир-2», запущенная с ракетного полигона Семнан, вывела на орбиту первый иранский спутник «Омид».

Снимок Google earth: иранский ракетный полигон Семнан

В ноябре 2008 года с полигона Семнан на дальность около 2000 км была запущена твердотопливная одноступенчатая БРСД «Саджил-1». Двухступенчатая ракета «Саджил-2» в мае 2009 года продемонстрировала дальность пуска 2500 км. В отличие от иранских жидкостных ракет средней дальности, для запуска которых требуется несколько часов на заправку и подготовку, твердотопливные ракеты «Саджил» лишены этого недостатка. По заявлению иранских военных предполагается создание мобильных твердотопливных ракетных комплексов, которые будут постоянно находиться на боевом патрулировании, таким образом, предполагается осуществлять ракетное сдерживание Израиля и гарантировать выживание иранских БРСД в случае внезапного обезоруживающего удара.

Работы по созданию ядерного оружия велись в своё время в Испании, Румынии, Норвегии, Египте, Саудовской Аравии, Сирии, Алжире, Мьянме, Южной Корее, Швейцарии и на Тайване. После распада СССР ядерное оружие осталось на Украине, в Белоруссии и Казахстане, согласно подписанному в 1992 году Лиссабонскому протоколу они были объявлены странами, не имеющими ядерного оружия, и в 1994—1996 годах передали все ядерные боеприпасы России. Кроме стран, пытавшихся создать ядерное оружие целенаправленно, в мире существует еще, по меньшей мере, два десятка государств, способных при желании в обозримой перспективе создать собственное ядерное оружие. В первую очередь, это европейские промышленно развитые страны, такие как ФРГ, Италия, Бельгия и Нидерланды, а также Япония, Австралия и Канада. Во многих странах накоплены большие запасы плутония извлечённого из ОЯТ. Например, запасов расщепляющихся материалов, накопленных в Германии и Японии, достаточно для создания более чем тысячи ядерных зарядов, что сравнимо с ядерным потенциалом России или США.

Данные по распространению ядерного оружия по состоянию на 2010 год

Несмотря на сокращение числа ядерных боезарядов в России, США, Франции и Великобритании вооруженные силы государств, где ядерное оружие имеется, регулярно проводят тренировки, и учения, на которых отрабатывается подготовка к применению ядерного оружия и защита от него. В развитых странах, где ядерного оружия нет, готовят свою армию к действиям в условиях ядерной войны. Несмотря на декларируемое прекращение «холодной войны» и мораторий на ядерные испытания, совершенствование и создание новых видов ядерного оружия не прекратилось. Это связано с тем, что военное и политическое руководство ядерных государств по-прежнему рассматривает возможные сценарии ядерной войны.

Как это ни печально, надо признать, что ядерная война возможна. В случае глобального ядерного конфликта между США и Россией к которому, несомненно, окажутся подключены американские союзники по НАТО (в том числе Великобритания и Франция), стороны могут применить друг против друга до 4000 ядерных боезарядов. Это будет иметь катастрофические последствия для развитых стран мира. В течение короткого временного периода погибнет около 700 миллионов человек, будет уничтожена большая часть промышленного и инфраструктурного потенциала «западной цивилизации». Однако как показывают современные исследования к гибели жизни на планете и даже к полному уничтожению человечества это не приведёт. Имеющихся в распоряжении США и России ядерных зарядов достаточно, чтобы превратить в зону сплошных разрушений страну размером с Францию. Но, по всей видимости, глобальной «ядерной зимы» не наступит, а радиационное заражение местности будет не настолько губительным, как это принято считать.

Без сомнения выброс в атмосферу миллионов тонн сажи и пыли может оказывать некоторое влияние на количество солнечного света, падающего на поверхность земли, это на непродолжительное время несколько опустит температуру в умеренных широтах, но оно будет не столь значительным, как это принято считать в мрачных апокалипсических прогнозах. Изменение температурного режима в прибрежных и субтропических зонах будет практически не заметным. Это подтверждается многолетними наблюдениями за последствиями масштабных лесных пожаров и крупными извержениями вулканов, во время которых в атмосферу оказываются так же выброшены большие объёмы твёрдых частиц. Основная масса сажи при лесных и техногенных пожарах не достигает стратосферы, и довольно быстро вымывается из нижних слоёв атмосферы.

Несостоятельно также мнение о том, что несколько тысяч ядерных взрывов могут расколоть планету. С 1945 года на Земле прогремело около 2500 ядерных взрывов, из них 12 мощностью от 10 до 58 Мт, но к каким либо глобальным изменениям это не привело. При крупных вулканических извержениях количество выделенной энергии превышает мощность бомбы, сброшенной на Хиросиму в десятки раз, только в 20 веке было более 3500 извержений вулканов, но заметного влияния на рост численности населения на земле это не оказало.

Наибольший разрушительный эффект при ядерном взрыве достигается в случае воздушного подрыва ядерного заряда. Современные ядерные боевые части имеют высокий коэффициент использования делящихся и расщепляющихся материалов, и в случае отсутствия их контакта с грунтом при воздушном взрыве образуется минимальное количество радионуклидов, выпадающих впоследствии в виде радиоактивных осадков. Так после испытания на Новой земле в 1961 году термоядерного заряда мощностью 58 Мт участники испытаний прибыли в точку, над которой произошел термоядерный взрыв, уже через два часа, уровень радиации в этом месте большой опасности не представлял. В настоящее время радиационный фон в местах, где проводились воздушные испытательные ядерные взрывы, мало отличается естественных значений.

При ядерном взрыве образуется сложная смесь более чем 200 радиоактивных изотопов 36 элементов (от цинка до гадолиния), наиболее активными являются короткоживущие радионуклиды. Так, через 7, через 49 и через 343 суток после взрыва активность ПЯД снижается соответственно в 10, 100 и 1000 раз по сравнению с активностью через час после взрыва. Кроме продуктов ядерного деления радиоактивное заражение местности обусловлено радионуклидами наведенной активности и рассеянной частью ядерного заряда, не принявшей участие в реакции деления. При воздушных ядерных взрывах 20-25 % продуктов деления выпадает в ближайших окрестностях. Часть радионуклидов задерживается в нижней части атмосферы и под действием ветра перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Они могут находиться в воздухе около месяца, постепенно выпадают на Землю на значительном удалении от точки взрыва. Основная часть продуктов деления, образовавшихся при воздушном взрыве, выбрасывается в стратосферу (на высоту 12-15 км), где происходит их глобальное рассеивание и в значительной степени распад. Стоит отметить, что в случае наземного ядерного взрыва радиационное заражение местности может быть больше в десятки раз. Наибольшую же опасность представляет нанесение ядерных ударов по действующим АЭС и предприятиям ядерной отрасли, в этом случае радиационное заражение местности может действительно иметь катастрофический долговременный характер.

Очевидно, что в случае глобальной ядерной войны человечество, понеся огромные потери, не исчезнет. Можно предположить, что центрами цивилизации после «Третьей мировой» станут относительно слабо развитые страны Азии, Африки, Центральной и Южной Америки, а так же Австралия, незатронутые в ядерном конфликте. Пророчества относительно того, что «Четвёртая мировая» будет вестись «камнями и палками» несостоятельны, так как накопленный багаж знаний и навыков гарантирует, что человечество сохранит технологический путь развития.

Ядерная авиабомба В61

В отличие от глобальной ядерной войны в будущем в ходе военных конфликтов представляется более вероятным использование тактических ядерных зарядов. Вызывает настороженность, что совершенствование ядерного оружия приводит к снижению порога его применения. Так в настоящее время в США проходит испытание ядерная авиабомба В61-12. После принятия на вооружение данный ядерный боеприпас должен вытеснить большинство состоящих на вооружении авиабомб (кроме В61-11) этого семейства: В61-3, В61-4, В61-7, В61-10.

Благодаря использованию спутниковой или инерциальной системы наведения точность бомбометания В61-12 должна увеличиться в несколько раз, что, по мнению американских военных, наряду с возможностью ступенчатого регулирования мощности взрыва (0,3, 5, 10, и 50 кт) позволит использовать её как тактическое, так и стратегическое оружие. А также минимизировать побочный ущерб от её применения для своих войск.

Другим направлением совершенствования ядерного оружия может стать создание зарядов на основе ядерных изомеров, например гафниевая бомба на основе гафния-178m2. По разрушительному эффекту один грамм гафния может быть эквивалентен 50 килограммам тротила и при этом практически не происходит радиационного заражения местности. Однако исследования, которые велись в Агентстве по перспективным оборонным научно-исследовательским разработкам США с 1998 по 2004 год, показали, что при использовании существующих на сегодняшний день технологий высвобождение избыточной энергии из ядра гафния-178m2 пока не представляется возможным. Но так или иначе ядерное оружие уже более 70 лет находится в военных арсеналах и отказ от него в ближайшее время не предвидится.

По материалам: https://fas.org/issues/nuclear-weapons/status-world-nuclear-forces/ https://www.bellona.ru/reports/1174944248.53 https://warspot.ru/4658-neudavshayasya-kovka-molota-tora https://www.nationaldefense.ru/includes/periodics/armament/2012/0807/20358969/detail.shtml https://zver-v.livejournal.com/133575.html https://endoftheamericandream.com/archives/the-number-of-volcanoes-erupting-right-now-is-greater-than-the-20th-centurys-yearly-average

Распространение ядерного оружия.

Кроме перечисленных выше, имеются и другие страны, располагающие технологией, необходимой для разработки и создания ядерного оружия, но те из них, которые подписали договор о нераспространении ядерного оружия, отказались от применения ядерной энергии в военных целях. Известно, что Израиль, Пакистан и Индия, не подписавшие названного договора, имеют ядерное оружие. КНДР, подписавшая договор, подозревается в скрытном проведении работ по созданию ядерного оружия. В 1992 ЮАР объявила, что в ее распоряжении имелось шесть единиц ядерного оружия, но они были уничтожены, и ратифицировала договор о нераспространении. Инспектирование, проведенное специальной комиссией ООН и МАГАТЭ в Ираке после войны в Персидском заливе (1990–1991), показало, что у Ирака имелась серьезно поставленная программа разработки ядерного, биологического и химического оружия. Что касается его ядерной программы, то ко времени войны в Персидском заливе Ираку оставалось лишь два-три года до создания готового к применению ядерного оружия. Правительства Израиля и США утверждают, что своя программа разработки ядерного оружия имеется у Ирана. Но Иран подписал договор о нераспространении, а в 1994 вошло в силу соглашение с МАГАТЭ о международном контроле. С тех пор инспекторы МАГАТЭ не сообщали фактов, свидетельствующих о работах по созданию ядерного оружия в Иране.

История создания оружия

Теоретические начала военного применения атомного распада были заложены открытием радиоактивности семьей Кюри (1898 г.), работами Э. Резерфорда (1911 г.). Практически ядро атома сумели расщепить ирландец Э. Уолтон и англичанин Д. Кокрофт (1932 г.) в Кембридже. В английском Бирмингемском университете О. Фриш и Р. Пайерлс (1939 г.) теоретически рассчитали критическую массу урана, необходимую для взрыва бомбы. Она составила 10 килограммов урана -235. Работы по конструированию атомной бомбы США и Германия начали практически одновременно (август, сентябрь 1939 г.). Но Германия, не имевшая собственных запасов урановой руды и занятая военными действиями, не могла уделять первоочередного внимания ядерному оружию. Работы В. Гейзенберга по строительству ядерного реактора двигались медленно. Из пяти методов разделения изотопов эффективным оказался только один. Практическому эксперименту получения цепной реакции (январь 1945 г.) помешал демонтаж оборудования, который провели под угрозой приближения советских войск.

Американская программа

В США над ядерной программой, запущенной письмом Л. Силарда, Ю. Вигнера, А. Эйнштейна президенту, работали не только американские физики. Использовались работы немецких физиков-эмигрантов Теллера, Бете, Блоха, Фукса, датчанина Н. Бора. Прорывным моментом проекта стало строительство под руководством Энрико Ферми Лос-Аламосского реактора, позволившего получить оружейный плутоний и уран. Перед этим итальянец, эмигрировавший в США из-за преследования евреев (1939 г.), теоретически доказал замедление нейтронов, разработал уран-графитовую схему реактора, провел практические эксперименты по получению самоподдерживающейся цепной реакции.


Энрико Ферми читает лекцию в Чикагском институте ядерных исследований

Такие масштабные работы, как создание оружия совершенного нового типа, не по силам одному человеку или небольшому коллективу ученых. В американском «Манхеттенском проекте» работало более 100000 человек, из которых 40000 составляли ученые, техники, женщины-вычислители. Тем не менее, американцы считают «отцом бомбы» Роберта Оппенгеймера.


Роберт Оппенгеймер на заседании сенатской комиссии США

В лаборатории Лос-Аламоса Оппенгеймер руководил научной частью проекта, координировал работы ученых, За организацию строительства, секретность, охрану отвечал генерал Л. Гровс, впоследствии — главный инициатор ядерной бомбардировки Японии. К началу работы над ядерным проектом Р. Оппенгеймер был автором ряда научных работ по квантовым переходам, гравитационному коллапсу, расчету свойств мезонов, доказательству теоремы Эренфеста — Оппенгеймера.

ЭТО ИНТЕРЕСНО. Результаты практического применения атомного оружия настолько поразили Р. Оппенгеймера, что он стал активным противником военного использования атома. Высказывания ученого о необходимости сдерживания, ограничения ядерной гонки привели к отстранению Оппенгеймера от секретных программ Соединенных Штатов (1954 г.).

Сырьем для получения урана-235 была урановая руда из конголезского рудника бельгийской компании. Количество руды, вывезенной перед затоплением рудника в США, было ограничено. Использовать технологию разделения разных изотопов урана на центрифуге не удалось. Для получения чистого урана-235, вступающего в реакцию расщепления, были использованы газовая диффузия, электромагнитное разделение, термодиффузия. К запланированному сроку (лето 1945 г.) очищенного урана-235 хватало только для снаряжения одной бомбы, названной «Малышом». Для подрывного устройства «Малыша» применили пушечную схему, при которой критическая масса заряда достигалась соединением двух блоков докритической массы при помощи порохового заряда. В срабатывании пушечной схемы конструкторы не сомневались, поэтому испытания единственной бомбы не проводились. Подобных трудностей не было при производстве плутония-239. Его получали из урана-238, которого было накоплено достаточно. Плутониевые заряды были изготовлены для двух бомб, названных «Штучка» и «Толстяк». Но пушечная схема для плутониевых зарядов была непригодна. Конструкторам пришлось использовать имплозивную схему подрыва, при которой десятки взрывных линз сжимали фрагменты оружейного плутония до критической массы.

Первые испытания, практическое применение ядерного оружия

Первое испытание безоболочечной бомбы «Штучка» (16 июля 1945 г.), получившее шифр «Тринити», американцы провели на полигоне Аламогордо. Наземный взрыв устройства показал мощность, равную подрыву 21 тысячи тонн тротиловой взрывчатки. Для испытательного подрыва была выбрана безжизненная, ненаселенная пустыня Нью-Мексико. Кроме человеческих жертв, несколько ученых опасались возникновения бесконтрольной реакции выгорания кислорода в атмосфере Земли.


Взрыв «Штучки» в проекте «Тринити»

Температура на месте взрыва расплавила кварцевые породы в зеленую стекловидную массу, получившую название «тринитит». Ободренное успехом, правительство США отдало приказ подготовить ядерные боеприпасы к сбросу на Японию. Урановый и плутониевый заряды «одели» в оболочки авиабомб. При этом «Толстяк», из-за имплозивной конструкции подрыва, по размеру и весу был значительно больше «Малыша».


Макеты «Толстяка» и «Малыша» в современном музее ядерного оружия

Бомбы были оборудованы барометрическими и часовыми взрывателями, обеспечивающими воздушный подрыв заряда на высоте 500-700 метров. На обслуживании ядерного проекта работал отдельный авиационный полк под номером 509 (с 1944 г.). Именно командир этого полка Пол Тиббетс выполнил приказ военного министра (завизированный президентом Трумэном) о бомбардировке Японии.


Экипаж «Энолы Гей». Полковник Пол Тиббетс в центре (с трубкой в зубах)

Ночью 6 августа с американской авиабазы на Марианских островах вылетела группа самолетов в составе основного бомбардировщика B-29 (номер 44-86292, название «Энола Гей»), трех разведчиков, двух самолетов аэрофотосъемки, запасного бомбардировщика. Через 6 часов полета, пролетев около 2500 миль, группа достигла берегов Южной Японии. Высланные вперед разведчики сообщили об отсутствии облачности над Хиросимой, основной целью полета. В 8 утра «Энола Гей», пилотируемая П. Тиббетсом, сбросила урановую бомбу над центром Хиросимы. В момент бомбардировки в Хиросиме жило до 250 тысяч человек, базировались крупные военные склады, штаб фельдмаршала С. Хаты, командующего обороной Южной Японии. В результате взрыва (мощность оценивается 10–17 килотоннами) от светового излучения, взрывной волны, огненного смерча погибло до 140 тысяч японцев, город выгорел в диаметре 2 километров.


Документальный снимок разрушений в Хиросиме

Не менее ужасающим был взрыв плутониевого заряда над Нагасаки. «Толстяка» на японский порт сбросил «В-29» под командованием майора Ч. Суини. Облачность не дала экипажу точно прицелиться, бомба была сброшена над холмами и промзоной. Поэтому, несмотря на большую мощность (21 килотонна), плутониевый заряд убил «всего» 74 тысячи японцев. Впоследствии в Японии от радиационного заражения умерло не менее 450 тысяч человек. Атомные бомбардировки не принесли немедленной капитуляции Японии, но подтолкнули СССР к объявлению войны и началу Маньчжурской операции. Только после потери Квантунской армии (разбита за 10 дней), полного освобождения Маньчжурии и севера Кореи от японских войск император согласился на капитуляцию (подписана 2 сентября 1945 г.). Но на некоторое время агрессивные военные круги США почувствовали себя монополистом, который может диктовать условия всему миру. Американские штабисты даже разработали планы «упреждающей войны» против СССР. Военные действия по плану «Троян» должны были начаться в 1950 г. Позже план скорректировали на 1957 год, для включения в него стран НАТО. Агрессивные планы остановили только первые испытания советского ядерного оружия.

Советская ядерная программа

До 1941 года советские ученые занимались теорией строения атомного ядра, цепной реакции, радиохимическими исследованиями без выхода на тему ядерного оружия. По ядерной физике проводились всесоюзные конференции, этой тематикой занимались ленинградские Радиевый институт, первый Физтех, харьковский физико-технический институт. Первым толчком к мыслям о военном применении атомного распада стало прекращение публикаций по физике ядра в научных журналах Германии, Великобритании, США. Немецкий физик Ф. Ланге, эмигрировавший в СССР (1935 г.), в Харьковском УФТИ организовал лабораторию ударных напряжений. Еще в 1940 году Ланге и сотрудники его лаборатории В. Шпинель и В. Маслов подали Наркомату обороны СССР предложение о работах по «урановому боеприпасу», не получившее поддержки руководства. С началом войны объемы ядерных исследований были сокращены до минимума, лаборатории закрывались или эвакуировались. К концу 1941 года в НКВД появились разведывательные донесения об интенсификации в США и Великобритании секретных разработок по атомной энергии. Советская разведка скопировала стенограмму английского «Комитета M.A.U.D.», из которой было понятно, что британские эксперты определяют реальный срок создания атомной бомбы периодом в 3-4 года. После этого ядерные исследования в СССР были засекречены, перед учеными были поставлены задачи разработки технологий очистки урана, разработке конструкции оружия. В этой программе были изучены методы бета-спектроскопии ядер, обнаружено ядерное деление под действием космического излучения, в импульсных количествах получен препарат плутония. Полная технология выделения плутония из облученного урана была разработана Радиевым институтом (1946 г., руководитель В. Хлопин). Сотрудники ГИПХ (Н. Хованский, Я. Зильберман) создали технологическую часть для строительства радиохимического завода. Руководителем советского атомного проекта стал И. В, Курчатов (март 1943 г.). До этого назначения сорокалетний ученый:

  • был приглашен академиком А. Иоффе в ЛФТИ (1925 г.);
  • начал заниматься атомной физикой, заведует физическим отделом, специальной лабораторией ЛФТИ (1930-1932 гг.);
  • участвует в конструировании и запуске ленинградского циклотрона (1932-1937 гг.);
  • изучает захват нейтрона протоном, открывает селективное поглощение нейтронов, резонансные явления процесса (в коллективе, 1935-1940 гг.);
  • получает ядерные константы для реакции деления урана (1939 г.);
  • теоретически доказывает возможность цепной реакции урана и тяжелой воды (1940 г.);
  • разрабатывает систему размагничивания корабельных корпусов, внедряет защиту от магнитных мин на Балтийском, Черноморском флоте (1940-1941 гг.).

На первом этапе проекта (1943-1945 гг.) Курчатовская «Лаборатория №2» проводила исследовательские работы, изучала методы получения металлического урана и карбида урана. Для этих работ Курчатов добился демобилизации из армии нужных специалистов. После американских взрывов практические работы резко ускорились. Были построены экспериментальный реактор (на основе циклотрона, перевезенного из Ленинграда) и рабочий реактор для получения оружейного плутония (декабрь 1946 г.). Для получения изотопов урана использовалась газодиффузионная методика. На их основе в закрытой зоне «Комбинат 817» (Озерск Челябинской области) заработал промышленный реактор (июнь 1948 г.). Комбинат «Маяк» начал производство плутония по ацетатно-осадительной технологии, произвел оружейный плутоний в количестве, необходимом для первого испытания (1949 г.). Одновременно были изобретены запалы для бомб на полоний-бериллиевых источниках. Правой рукой Курчатова в атомном проекте стал Ю. Харитон. Под его научным руководством был построен и заработал секретный КБ-11 в закрытой зоне («Кремлев», «Арзамас-75», «Арзамас-16», Саров Нижегородской области).


Игорь Васильевич Курчатов и Юлий Борисович Харитон на отдыхе в Семипалатинске

Главный конструктор засекреченного КБ-11 был занят конструированием плутониевого устройства, увеличением мощности, снижением веса бомбы, скопированной с американской схемы (полученной от советских разведчиков). При этом был найден ряд новых решений, позволивших вдвое улучшить исходные параметры американского образца. Третьей ключевой точкой промышленного изготовления боеприпаса стало сборочное производство, организованное под Заречным (Пензенская область). Объект, проходящий по секретной документации как «Пенза-19», был построен на базе приборостроительного завода №1134. На загородных закрытых территориях, которые в обиходе назывались «Второе производство», «База оборудования» до 2002 года собирались все устройства разработки Сарова и Снежинска («Челябинск-50»).


Макет авиабомбы «РДС-2» в музее Заречного

ЭТО ИНТЕРЕСНО. В Заречном, на базе ПО «Старт», работает один из трех российских музеев ядерного оружия. Два других музея открыты в Сарове и Снежинске (дублер «Арзамаса-16» был построен под Челябинском в 1957 г.). Испытания «РДС-1» (кодовое название наземного устройства без авиационной оболочки) были проведены на Семипалатинском полигоне в 1949 г. К утру 29 августа устройство было собрано. В 7 утра с пульта руководства была отдана команда на подрыв заряда в 20 килотонн.


Подлинный пульт запуска ядерного устройства на первых испытаниях демонстрируется в музее Сарова

На полигоне (в 170 километрах от областного центра) была построена сорокаметровая стальная вышка, По территории полигона концентрическими окружностями разместили несколько тысяч приборов и датчиков излучения. На десятикилометровом круге были построены военные фортификации, гражданские объекты (жилые дома, бетонные производственные цеха). На позициях разместили технику — танки, самолеты, орудия. В войсковых укрытиях (окопах и блиндажах) были привязаны овцы и козы. На дальнем диаметре разместились вольеры с подопытными животными (кроликами, свиньями, крысами). Все дома, мосты были разрушены или сгорели, так же как грузовики. Ударной волной перевернуло пушки и танки. Уцелели только монолитные каркасы зданий из железобетона.

ДЕЙСТВИЕ ЯДЕРНОГО ВЗРЫВА

Ядерное оружие предназначено для уничтожения живой силы и военных объектов противника. Важнейшими поражающими факторами для людей являются ударная волна, световое излучение и проникающая радиация; разрушающее действие на военные объекты обусловлено в основном ударной волной и вторичными тепловыми эффектами.

При детонации взрывчатых веществ обычного типа почти вся энергия выделяется в виде кинетической энергии, которая практически полностью переходит в энергию ударной волны. При ядерном и термоядерном взрывах по реакции деления ок. 50% всей энергии переходит в энергию ударной волны, а ок. 35% – в световое излучение. Остальные 15% энергии высвобождаются в форме разных видов проникающей радиации.

При ядерном взрыве образуется сильно нагретая, светящаяся, приблизительно сферическая масса – т.н. огненный шар. Он сразу же начинает расширяться, охлаждаться и подниматься вверх. По мере его охлаждения пары в огненном шаре конденсируются, образуя облако, содержащее твердые частицы материала бомбы и капельки воды, что придает ему вид обычного облака. Возникает сильная воздушная тяга, всасывающая в атомное облако подвижный материал с поверхности земли. Облако поднимается, но через некоторое время начинает медленно опускаться. Опустившись до уровня, на котором его плотность близка к плотности окружающего воздуха, облако расширяется, принимая характерную грибовидную форму.
Таблица 1. Действие ударной волны

Таблица 1. ДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ
Объекты и избыточное давление, необходимое для их серьезного поврежденияРадиус серьезного повреждения, м
5 кт10 кт20 кт
Танки (0,2 МПа)120150200
Автомашины (0,085 МПа)600700800
Люди в застроенной местности (вследствие предсказуемых вторичных эффектов)6008001000
Люди на открытой местности (вследствие предсказуемых вторичных эффектов)80010001400
Железобетонные здания (0,055 МПа)85011001300
Самолеты на земле (0,03 МПа)130017002100
Каркасные здания (0,04 МПа)160020002500

Введение

Ядерное оружие — это оружие, разрушительное действие которого основано на использовании внутриядерной энергии, выделяющейся при ядерном взрыве.

Ядерное оружие основано на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер изотопов урана-235, плутония-239 или при термоядерных реакциях синтеза легких ядер — изотопов водорода (дейтерия и трития) в более тяжелые. ед.

Это оружие включает в себя различные ядерные боеголовки (боеголовки ракет и торпед, самолетов и глубинных бомб, артиллерийские снаряды и мины), оснащенные ядерными зарядными устройствами, а также средства управления ими и их доставки к цели.

Основная часть ядерного оружия — это ядерный заряд, содержащий ядерное взрывчатое вещество (ЯВС) — уран-235 или плутоний-239.

Цепная ядерная реакция может развиваться только при наличии критической массы делящегося вещества.

Перед взрывом ядерное взрывчатое вещество в одном боеприпасе необходимо разделить на отдельные части, масса каждой из которых должна быть меньше критической. Чтобы осуществить взрыв, необходимо объединить их в один, т.е. создать сверхкритическую массу и инициировать начало реакции от специального источника нейтронов.

Прямое энергетическое действие.

Действие ударной волны.

Через долю секунды после взрыва от огненного шара распространяется ударная волна – как бы движущаяся стена горячего сжатого воздуха. Толщина этой ударной волны значительно больше, чем при обычном взрыве, и поэтому она дольше воздействует на встречный объект. Скачок давления причиняет ущерб из-за увлекающего действия, приводящего к перекатыванию, обрушению и разметыванию объектов. Сила ударной волны характеризуется создаваемым ею избыточным давлением, т.е. превышением нормального атмосферного давления. При этом пустотелые структуры легче разрушаются, нежели сплошные или армированные. Приземистые и подземные сооружения в меньшей мере подвержены разрушительному действию ударной волны, чем высокие здания. Тело человека обладает удивительной стойкостью к ударной волне. Поэтому прямое воздействие избыточного давления ударной волны не приводит к значительным людским потерям. Большей частью люди гибнут под обломками обрушивающихся зданий и получают травмы от быстро движущихся предметов. В табл. 1 представлен ряд различных объектов с указанием избыточного давления, вызывающего серьезные повреждения, и радиуса зоны, в которой наблюдается серьезное повреждение при взрывах мощностью 5, 10 и 20 кт тротилового эквивалента.

Действие светового излучения.

Как только возникает огненный шар, он начинает испускать световое излучение, в том числе инфракрасное и ультрафиолетовое. Происходят две вспышки светового излучения: интенсивная, но малой длительности, при взрыве, обычно слишком короткая, чтобы вызвать значительные людские потери, а затем вторая, менее интенсивная, но более длительная. Вторая вспышка оказывается причиной почти всех людских потерь, обусловленных световым излучением. Световое излучение распространяется прямолинейно и действует в пределах видимости огненного шара, но не обладает сколько-нибудь значительной проникающей способностью. Надежной защитой от него может быть непрозрачная ткань, например палаточная, хотя сама она может загореться. Светлоокрашенные ткани отражают световое излучение, а поэтому требуют для воспламенения большей энергии излучения, чем темные. После первой вспышки света можно успеть спрятаться за тем или иным укрытием от второй вспышки. Степень поражения человека световым излучением зависит от того, в какой мере открыта поверхность его тела. Прямое действие светового излучения обычно не приводит к большим повреждениям материалов. Но поскольку такое излучение вызывает возгорание, оно может причинять большой ущерб вследствие вторичных эффектов, о чем свидетельствуют колоссальные пожары в Хиросиме и Нагасаки.

Проникающая радиация.

Начальная радиация, состоящая в основном из гамма-излучения и нейтронов, испускается самим взрывом в течение примерно 60 с. Она действует в пределах прямой видимости. Ее поражающее действие можно уменьшить, если, заметив первую взрывную вспышку, сразу спрятаться в укрытие. Начальная радиация обладает значительной проникающей способностью, так что для защиты от нее требуется толстый лист металла или толстый слой грунта. Стальной лист толщиной 40 мм пропускает половину падающей на него радиации. Как поглотитель радиации сталь в 4 раза эффективнее бетона, в 5 раз – земли, в 8 раз – воды, и в 16 раз – дерева. Но она в 3 раза менее эффективна, чем свинец. Остаточная радиация испускается длительное время. Она может быть связана с наведенной радиоактивностью и с радиоактивными осадками. В результате действия нейтронной составляющей начальной радиации на грунт вблизи эпицентра взрыва грунт становится радиоактивным. При взрывах на поверхности земли и на небольшой высоте наведенная радиоактивность особенно велика и может сохраняться длительное время. «Радиоактивными осадками» называется загрязнение частицами, выпадающими из радиоактивного облака. Это частицы делящегося материала самой бомбы, а также материала, затянутого в атомное облако с земли и ставшего радиоактивным в результате облучения нейтронами, высвобождающимися в ходе ядерной реакции. Такие частицы постепенно оседают, что приводит к радиоактивному загрязнению поверхностей. Более тяжелые из них быстро оседают неподалеку от места взрыва. Более легкие радиоактивные частицы, уносимые ветром, могут оседать на расстоянии многих километров, заражая большие площади на протяжении длительного времени. Прямые людские потери от радиоактивных осадков могут быть значительны вблизи эпицентра взрыва. Но с увеличением расстояния от эпицентра интенсивность радиации быстро уменьшается.

Что стоит знать об очагах поражения?

Размеры очага зависят от мощности ядерного взрыва. Особенности разрушений в очаге имеют прямую зависимость от прочности конструкций и этажности строений, а также плотности застройки. Если говорить о внешней границе ядерного поражения, то она занимает условную линию на местности, которая проводится на расстоянии от центра взрыва. Избыточное давление ударной волны имеет величину, равную 10 кПа.

Очаг поражения ОМП – зона, которая подверглась влиянию поражающих факторов взрыва ядерного оружия. Очаг отличается массовыми разрушениями построек, завалами, пожарами, авариями в городских коммунальных сетях. Наблюдаются огромные потери среди мирного населения.

Виды поражающего действия радиации.

Радиация разрушает ткани тела. Поглощенная доза излучения – это энергетическая величина, измеряемая в радах (1 рад = 0,01 Дж/кг) для всех видов проникающего излучения. Разные виды излучения оказывают разное действие на организм человека. Поэтому экспозиционная доза рентгеновского и гамма-излучения измеряется в рентгенах (1Р = 2,58×10–4 Кл/кг). Вред, нанесенный человеческой ткани поглощением радиации, оценивается в единицах эквивалентной дозы излучения – бэрах (бэр – биологический эквивалент рентгена). Чтобы вычислить дозу в рентгенах, необходимо дозу в радах умножить на т.н. относительную биологическую эффективность рассматриваемого вида проникающей радиации. Все люди на протяжении своей жизни поглощают некоторое природное (фоновое) проникающее излучение, а многие – искусственное, например рентгеновское. Человеческий организм, по-видимому, справляется с таким уровнем облучения. Вредные же последствия наблюдаются тогда, когда либо полная накопленная доза слишком велика, либо облучение произошло за короткое время. (Правда, доза, полученная в результате равномерного облучения на протяжении более длительного времени, тоже может приводить к тяжелым последствиям.) Как правило, полученная доза облучения не приводит к немедленному поражению. Даже летальные дозы могут в течение часа и более никак не сказываться. Ожидаемые результаты облучения (всего тела) человека разными дозами проникающей радиации представлены в табл. 2.
Таблица 2. Биологическая реакция людей на проникающую радиацию

Таблица 2. БИОЛОГИЧЕСКАЯ РЕАКЦИЯ ЛЮДЕЙ НА ПРОНИКАЮЩУЮ РАДИАЦИЮ
Номинальная доза, радПоявление первых симптомовСнижение боеспособностиГоспитализация и дальнейшее протекание
0–70В пределах 6 ч легкие случаи проходящей головной боли и тошноты – до 5% группы в верхней части диапазона дозы.Нет.Госпитализация не требуется. Работоспособность сохраняется.
70–150В пределах 3–6 ч проходящая слабая головная боль и тошнота. Слабая рвота – до 50% группы.Небольшое снижение способности выполнять свои обязанности у 25% группы. До 5% могут быть небоеспособ-ными.Возможна госпитализация (20–30 сут) менее чем 5% в верхней части диапазона дозы. Возвращение в строй, летальные исходы крайне маловероятны.
150–450В пределах 3 ч головная боль, тошнота и слабость. Легкие случаи поноса. Рвота – до 50% группы.Сохраняется способность выполнять простые задачи. Способность выполнять боевые и сложные задачи может быть снижена. Свыше 5% небоеспособных в нижней части диапазона дозы (больше – с увеличением дозы).Показана госпитализация (30–90 сут) после латентного периода 10–30 сут. Смертельные исходы (от 5% и менее до 50% в верхней части диапазона дозы). При наибольших дозах возвращение в строй маловероятно.
450–800В пределах 1 ч сильная тошнота и рвота. Понос, лихорадочное состояние в верхней части диапазона.Сохраняется способность выполнять простые задачи. Значительное снижение боеспособности в верхней части диапазона на период более 24 ч.Госпитализация (90–120 сут) для всей группы. Латентный период 7–20 сут. 50% смертельных исходов в нижней части диапазона с увеличением к верхнему пределу. 100% смертельных исходов в пределах 45 сут.
800–3000В пределах 0,5–1 ч сильные и продолжительные рвота и понос, лихорадкаЗначительное снижение боеспособности. В верхней части диапазона у некоторых период временной полной небоеспособности.Показана госпитализация для 100%. Латентный период менее 7 сут. 100% смертельных исходов в пределах 14 сут.
3000–8000В пределах 5 мин сильные и продолжительные понос и рвота, лихорадка и упадок сил. В верх-ней части диапазона дозы возможны судороги.В пределах 5 мин полный выход из строя на 30–45 мин. После этого частичное восстановление, но с функциональными расстройствами до летального исхода.Госпитализация для 100%, латентный период 1–2 сут. 100% смертельных исходов в пределах 5 сут.
> 8000В пределах 5 мин. те же симптомы, что и выше.Полный, необратимый выход из строя. В пределах 5 мин потеря способности выполнять задачи, требующие физических усилий.Госпитализация для 100%. Латентного периода нет. 100% смертельных исходов через 15–48 ч.

Правила поведения и действий населения на территории, подверженной радиоактивному загрязнению

Очевидно, что из убежищ, а тем более из противорадиационных или простых укрытий, оказавшихся в зоне опасного (с уровнем радиации более 240 рад / ч) радиоактивного загрязнения, население будет эвакуировано в незараженные или слегка загрязненные участки. Это связано с тем, что длительное (несколько дней) пребывание людей в защитных сооружениях связано с серьезными физическими и психологическими нагрузками. В этом случае необходимо будет быстро и аккуратно сесть в транспорт, чтобы меньше подвергаться радиационному воздействию.

Пребывание людей на зараженной радиоактивными веществами территории вне укрытий (убежищ), несмотря на использование средств индивидуальной защиты, связано с возможностью опасного облучения и, как следствие, развитием лучевой болезни. Чтобы предотвратить тяжелые последствия радиации и ослабить проявления лучевой болезни, во всех случаях пребывания на зараженной территории необходимо проводить медицинскую профилактику травм ионизирующим излучением.

Большинство доступных противорадиационных препаратов вводятся в организм таким образом, чтобы они успели проникнуть во все клетки и ткани до возможного воздействия на человека. Время приема препаратов устанавливается в зависимости от способа их введения в организм: лекарства в таблетках, например, принимают за 30-40 минут, лекарства вводят внутримышечно инъекционно, за 5 минут до начала возможного облучения. Рекомендуется употреблять препараты в тех случаях, когда человек уже подвергался облучению. Противорадиационные препараты выпускаются в специальных наборах, предназначенных для индивидуального использования.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]