Как сделать рамочный хронограф для пневматики с целью настройки и тестирования своего оружия


В своей первой публикации я хочу рассказать вам, как я собрал хронограф за пару вечеров из дешевых и доступных всем деталей. Как вы наверное уже догадались из названия, этот девайс служит для измерения скорости пули у пневматических (и не очень) винтовок и бывает полезным для контроля её технического состояния.

  • Китайский Digispark — 80 рублей на момент покупки
  • Сегментный дисплей на TM1637 — 90 рублей на момент покупки
  • ИК светодиоды и ИК фототранзисторы (10 пар) — 110 рублей на момент покупки, нам нужны 2 пары
  • Резисторы 220 Ом (100шт) — 70 рублей на момент покупки, нам нужно только 2 штуки

На этом заканчиваются детали, которые необходимо покупать. Резисторы можно не заказывать, похожие по номиналу (но не меньше!) можно выдернуть из ненужной бытовой электроники. Таким образом, суммарные затраты менее 350 рублей, это ничто по сравнению с ценой нового заводского хронографа (over 1000р за самый простой, который по факту еще примитивнее нашего сабжа). Кроме деталей нам пригодятся:

  • Провода — найти в оффлайне бесплатно не проблема
  • Кусок пластиковой водопроводной трубы длиной более 10см (диаметр по вкусу) — так же легко найти
  • Паяльные принадлежности
  • Мультиметр (опционально)

Первые 3 детали достойны отдельного рассмотрения, так как имеют свои особенности, поэтому начнем с мини-обзоров на них.

1.1. Digispark

Представляет собой простую миниатюрную Arduino-совместимую плату с ATtiny85 на борту. Как подключить к Arduino IDE читаем на официальном сайте проекта, там же можно найти драйвера для нее. Существует два основных вида этой платы: с microUSB и более брутальный с USB коннектором, разведенным прямо на плате.

Мой хронограф не имеет собственного источника питания, поэтому я выбрал первый вариант платы. Встроенная батарейка/аккумулятор сильно повысит цену, не добавив при этом практически ничего к юзабилити. Power bank и кабель для зарядки телефона валяется практически у каждого.

Характеристики

само собой унаследованы от ATtiny85, его возможностей в нашем случае достаточно с головой. Фактически МК в хронографе не делает ничего, кроме опроса двух датчиков и управления дисплеем. Для тех, кто впервые сталкивается с Digispark-ом, я свёл наиболее важные особенности в таблицу:

Flash память6Кб (2Кб заняты загрузчиком)
RAM512 байт
EEPROM512 байт
Частота16,5 МГц (по-умолчанию)
Количество I/O пинов6
Питание на VIN5-12В
Pin 0PWM, SDA
Pin 1PWM
Pin 2SCK, ADC1
Pin 3USB+, ADC3
Pin 4PWM, USB-, ADC2
Pin 5PWM, ADC0

Эту табличку я использую как шпаргалку при разработке различных девайсов на базе этой платы. Как вы наверное заметили, нумерация пинов для функции analogRead() отличается, это следует учитывать. И еще одна особенность: на третьем пине висит подтягивающий резистор на 1.5кОм, т.к. он используется в USB.

Порядок сборки хронографа

Перед тем как ответить на вопрос, вроде как сделать рамочный хронограф для пневматики своими руками, следует подготовить корпус к установке датчиков и элементов микросхемы, которые должны быть защищены или расположены в местах, недоступных для попадания пули. Изнутри корпус рекомендуют окрасить темной небликующей краской, поглощающий свет. Это уменьшит число ложных срабатываний и повысит чувствительность прибора.

В заранее подготовленные отверстия в корпусе устанавливаются светодиоды и светочувствительные элементы. Светодиоды должны немного выдаваться во внутреннюю полость хронографа, а фотоприемники – быть слегка заглубленными, чтобы уменьшить интенсивность падающего внешнего освещения.

После установить плату, подключив ее к датчикам и подготовив места ввода питания. Если есть желание составить микросхему самостоятельно, минуя привлечение сторонних специалистов, можно использовать следующую схему (рис. 1).

Рис. 1 Микросхема хронографа

После сборки основных узлов необходимо закрыть электрическую схему прибора, обезопасив ее от механического воздействия и случайного попадания влаги. Это удобнее всего сделать, предусмотрев заранее отдельный пластмассовый коробок для печатной платы, имеющий выходы к дисплею, датчикам и батарее.

1.2. Дисплей на базе TM1637

Следующая важная деталь — цифровой дисплей, на который будет выводиться информация. Дисплей можно использовать любой, мой выбор обусловлен только дешевизной и простотой работы с ним. От дисплея в принципе можно вообще отказаться и выводить данные по кабелю на ПК, тогда девайс станет еще дешевле. Для работы понадобится библиотека DigitalTube. Сабж, на который я дал ссылку в начале поста, представляет собой клон дисплея Grove. Вид спереди:

Сзади:

Между цифрами расстояние одинаковое, поэтому при выключенном двоеточии числовые значения читаются нормально. Вместе со стандартной библиотекой поставляется пример, который работает с Digispark-ом без плясок с бубном:

Все, что умеет стандартная библиотека, — выводить числа 0-9 и буквы a-f, а так же менять яркость всего дисплея целиком. Значение цифры задается функцией display(int 0-3, int 0-15).
Экспресс-курс по использованию дисплея
// 1. Объявить заголовочный файл #include // 2. Задать пины #define CLK 0 #define DIO 1 // 3. Объявить объект TM1637 tm1637(CLK, DIO); // 4. Проинициализировать void setup() { tm1637.init(); tm1637.set(6); // Яркость } // 5. Использовать void loop() { // Вывод числа x на дисплей int x = 1234; tm1637.display(0, x / 1000); tm1637.display(1, x / 100 % 10); tm1637.display(2, x / 10 % 10); tm1637.display(3, x % 10); delay(500); } Если попытаться вывести символ с кодом за границами [0, 15], то дисплей показывает чушь, которая при этом не статичная, поэтому схитрить для вывода спецсимволов (градусов, минуса) без бубна не получится:

Это меня не устраивало, так как в своем хронографе я хотел предусмотреть вывод не только скорости, но и энергии пули (вычисляемой на основе заранее прописанной в скетче массы), эти два значения должны выводиться последовательно. Чтобы понять, что показывает дисплей в данный момент времени, нужно как-то разделять эти два значения визуально, например, при помощи символа «J». Конечно, можно тупо задействовать символ двоеточия как флаг-индикатор, но это же не тру и не кошерно) Поэтому я полез разбираться в библиотеку и на базе функции display сделал функцию setSegments(byte addr, byte data), которая зажигает в цифре с номером addr сегменты, закодированные в data:

void setSegments(byte addr, byte data) { tm1637.start(); tm1637.writeByte(ADDR_FIXED); tm1637.stop(); tm1637.start(); tm1637.writeByte(addr|0xc0); tm1637.writeByte(data); tm1637.stop(); tm1637.start(); tm1637.writeByte(tm1637.Cmd_DispCtrl); tm1637.stop(); } Кодируются сегменты предельно просто: младший бит data отвечает за самый верхний сегмент, и т.д. по часовой стрелке, седьмой бит отвечает за центральный сегмент. Например, символ ‘1’ кодируется как 0b00000110. Восьмой, старший бит используется только во второй цифре и отвечает за двоеточие, во всех остальных цифрах он игнорируется. Чтобы облегчить себе жизнь я, как и полагается любому ленивому айтишнику, автоматизировал процесс получения кодов символов при помощи excel:

Теперь можно легко сделать так:

Или так:

Let’s say HELLO

#include #define CLK 0 #define DIO 1 TM1637 tm1637(CLK, DIO); void setSegments(byte addr, byte data) { tm1637.start(); tm1637.writeByte(ADDR_FIXED); tm1637.stop(); tm1637.start(); tm1637.writeByte(addr|0xc0); tm1637.writeByte(data); tm1637.stop(); tm1637.start(); tm1637.writeByte(tm1637.Cmd_DispCtrl); tm1637.stop(); } void setup() { tm1637.init(); tm1637.set(6); } void loop() { // Вывод Hello setSegments(0, 118); setSegments(1, 121); setSegments(2, 54); setSegments(3, 63); delay(500); }

Виды хронографов для пневматики

На полках оружейных магазинов можно найти следующие виды хронографов:

  1. Надульный.
    Дешевое, компактное и конструктивно простое устройство. Надежная фиксация на стволе пневматики обеспечивает высокую точность показаний. Можно использовать как в помещении, так и на открытой местности. Уровень освещения не влияет на работу хронометра. Пользователи устройства отмечают его удобную транспортировку. Минусы – долгая подготовка к замерам скорости, необходимость покупки специального переходника (надульный хронометр часто не подходит для конкретного ствола).
  2. Рамочный.
    Универсальный, удобный, дешевый хронометр. Точно измерит начальную скорость, даже когда ствол оружия находится не близко к устройству. Недостаток – нестабильность показаний в условиях плохой освещенности. Преимущество – практически неограниченная «рамка».
  3. Рогатый.
    Конструктивная простота, удобство использования, совместимость со всеми видами пневматики – вот преимущества данного устройства. Для корректности показаний рекомендуется фиксировать оружие в одном положении. При стрельбе с рук возможны погрешности данных: ствол меняет положение к оси устройства. Другой недостаток – ограниченная «рамка», что может стать причиной поломки хронометра.

1.3. Датчики

Тут я, к сожалению, не могу ничего особо сказать, потому что на странице товара нет ни слова о характеристиках или хотя бы маркировки, по которой можно было бы откопать даташит. Типичный noname. Известна только длина волны 940нм.

Ценой одного светодиода определил, что ток больше 40мА для них смертелен, а напряжение питания должно быть ниже 3.3В. Фототранзистор немного прозрачный и реагирует на свет

Схема очень простая и незамысловатая, из всех пинов digispark-a нам понадобятся только P0, P1 — для работы с дисплеем, а так же P2 — для работы с датчиками:

Как видно, один резистор ограничивает ток на светодиодах, второй — стягивает P2 к земле. Фототранзисторы соединены последовательно, поэтому прохождение пули перед любой оптопарой приводит к уменьшению напряжения на P2. Путем регистрации двух последовательных скачков напряжения и замера времени между ними мы можем определить скорость движения пули (зная расстояние между датчиками, ессно). Использование одного пина для замеров имеет еще один плюс — нет никакого требуемого направления движения пули, можно стрелять с обоих концов. Собирать будем из этой горстки деталей:

Я пошел по пути миниатюризации и решил сделать бутерброд при помощи куска макетной платы:

Весь бутерброд залил термоклеем для прочности:

Остается только разместить датчики в трубке и припаять провода:

На фото видно, что я разместил дополнительный электролит на 100мКф параллельно светодиодам, чтобы при питании от повербанка не было пульсаций ИК диодов.

Пин P2 в качестве входа был выбран не просто так. Напомню, что P3 и P4 используются в USB, поэтому использование P2 дает возможность прошивать девайс уже в собранном виде. Во-вторых, P2 — аналоговый вход, поэтому можно не использовать прерывания, а просто мерить разницу в цикле между предыдущим и текущим значением на нем, если разница выше некоторого порога — значит пуля проходит между одной из оптопар. Но есть одна программная хитрость, без которой приведенная схема не взлетит, о ней поговорим далее.

Рекомендации для владельцев пневматического оружия

Если владелец «воздушки» занимается спортивной и развлекательной стрельбой, либо приобрел новое, не настроенное оружие – хронограф необходим. Устройство потребуется любителю страйкбола, для контроля НС, во избежание нанесения травмы игрокам. Однако, важно учитывать, что индукционные образцы определяют только металлические снаряды.

Измерительный прибор можно не покупать, если девайс используется не регулярно, пристрелен. По факту ухудшения результативности стрельбы, пневматику достаточно передать оружейному мастеру для технического обслуживания.

Хронографы с датчиками, работающие в видимом свете, чувствительны к уровню освещения. Такие приборы лучше использовать в помещениях, либо на природе в пасмурную погоду, для получения корректных данных. Некоторые модели с датчиками ИК-спектра, нормально работают при «засветах».

Надульный или рамочный – какой лучше? Однозначно, последний. Минусы надульных приборов – они часто «застреливаются», требуют покупку ствольных насадок. Не стоит ориентироваться на ценник – лучше доплатить.
20 Октября 2022

3.1. Пару слов о prescaler

Prescaler представляет собой делитель частоты, по-умолчанию в arduino-подобных платах он равен 128. От значения этой величины зависит максимальная частота опроса АЦП, по дефолту для 16 мГц контроллера получается 16/128 = 125 кГц. На каждую оцифровку уходит 13 операций, поэтому максимальная частота опроса пина — 9600 кГц (в теории, на практике реально не выше 7 кГц). Т.е. интервал между замерами примерно 120 мкс, это очень и очень много. Пуля, летящая со скоростью 300 м/с пролетит за это время 3,6 см — контроллер просто не успеет засечь факт прохождения пули через оптопару. Для нормальной работы нужен интервал между замерами как минимум 20 мкс, необходимое значение делителя для этого равно 16. Я пошел еще дальше и в своем девайсе использую делитель 8, делается это следующим образом: #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif void setup() { sbi(ADCSRA,ADPS2); cbi(ADCSRA,ADPS1); cbi(ADCSRA,ADPS0); … } Реальные замеры интервала analogRead на разных делителях:

Необходимый материал и детали

Для сборки хронографа требуется ряд устройств и инструментов. Их полный перечень зависит от навыков пользователя по проектированию и монтажу электрических схем.

Обязательно понадобятся следующие компоненты:

  • паяльник, припой и флюс – применяются на всех этапах подготовки микросхемы и соединения проводов;
  • микросхема, с помощью которой осуществляется замер временного интервала между прохождением пулей датчиков и расчет скоростных параметров;
  • светодиоды – служат источником искусственного освещения;
  • оптические приемники – фиксируют изменение освещенности при пролете пули между ними и светодиодами;
  • корпус прямоугольной формы, имеющий четыре стороны и полый изнутри (наподобие внешней части спичечной коробки). Лучше всего подойдет цельнометаллический корпус, устойчивый к удару пули при промахе;
  • дисплей для вывода результатов измерений.

3.2. Итоговый скетч

Я не буду подробно описывать код, он и так хорошо задокументирован. Вместо этого я в общих словах опишу алгоритм его работы. Итак, вся логика сводится к следующим этапам:

  • Первый цикл — измеряется разница между текущим и предыдущим значением на пине
  • Если разница больше заданного порога, то выходим из цикла и запоминаем текущее время (micros())
  • Второй цикл — аналогично предыдущему + счетчик времени в цикле
  • Если счетчик достиг заданной величины, то информирование об ошибке и переход к началу. Это позволяет не уходить циклу в вечность, если пуля по каким-то причинам не была замечена вторым датчиком
  • Если счетчик не переполнился и разница значений больше порога, то замеряем текущее время (micros())
  • На основе разницы во времени и расстоянии между датчиками вычисляем скорость и выводим на экран
  • Переход в начало

Это сильно упрощенная модель, в самом коде я добавил свистелок, в том числе вычисление и показ энергии пули на основе введенной заранее в коде массы пули.
Собственно, весь код

/* * Хронограф для измерения скорости движения пули, © SinuX 23.03.2016 */ #include #define CLK 1 // Пин дисплея #define DIO 0 // Пин дисплея #define START_PIN 1 // Аналоговый пин старта #define END_PIN 1 // Аналоговый пин финиша #define START_LEV 50 // Порог срабатывания старта #define END_LEV 50 // Порог срабатывания финиша #define TIMEOUT 10000 // Время ожидания финиша в микросекундах #define BULLET_WEIGHT 0.00051 // Масса пули в килограммах (для вычисления энергии) #define ENCODER_DIST 0.1 // Расстояние между датчиками в метрах (10см = 0.1м) #define SHOW_DELAY 3000 // Время показа результата // Для ускорения analogRead #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif // Служебные переменные int prevVal, curVal; unsigned long startTime, endTime; TM1637 tm1637(CLK, DIO); /* Переделанная функция TM1637::display(), которая позволяет зажигать отдельные сегменты * Нумерация сегментов: младший бит — верхний сегмент и т.д. по часовой стрелке * Центральный сегмент — старший бит */ void setSegments(byte addr, byte data) { tm1637.start(); tm1637.writeByte(ADDR_FIXED); tm1637.stop(); tm1637.start(); tm1637.writeByte(addr|0xc0); tm1637.writeByte(data); tm1637.stop(); tm1637.start(); tm1637.writeByte(tm1637.Cmd_DispCtrl); tm1637.stop(); } // Инициализация void setup() { // Устанавливаем prescaler на 8 для ускорения analogRead cbi(ADCSRA,ADPS2); sbi(ADCSRA,ADPS1); sbi(ADCSRA,ADPS0); // Инициализация дисплея tm1637.init(); tm1637.set(6); // Отображение приветствия setSegments(0, 118); setSegments(1, 121); setSegments(2, 54); setSegments(3, 63); delay(1000); } // Главный цикл void loop() { // Заставка ожидания showReady(); // Ожидание старта curVal = analogRead(START_PIN); do { prevVal = curVal; curVal = analogRead(START_PIN); } while (curVal — prevVal < START_LEV); startTime = micros(); // Ожидание финиша curVal = analogRead(END_PIN); do { prevVal = curVal; curVal = analogRead(END_PIN); // Если превышен интервал ожидания — показ ошибки и выход из цикла if (micros() — startTime >= TIMEOUT) { showError(); return; } } while (curVal — prevVal < END_LEV); endTime = micros(); // Вычисление и отображение результата showResult(); } // Отображение заставки ожидания выстрела void showReady() { setSegments(0, 73); setSegments(1, 73); setSegments(2, 73); setSegments(3, 73); delay(100); } // Вычисление и отображение скорости, энергии пули void showResult() { // Вычисление скорости пули в м/с и вывод на дисплей float bulletSpeed = ENCODER_DIST * 1000000 / (endTime — startTime); tm1637.display(0, (int)bulletSpeed / 100 % 10); tm1637.display(1, (int)bulletSpeed / 10 % 10); tm1637.display(2, (int)bulletSpeed % 10); setSegments(3, 84); delay(SHOW_DELAY); // Вычисление энергии в джоулях и вывод на дисплей float bulletEnergy = BULLET_WEIGHT * bulletSpeed * bulletSpeed / 2; tm1637.point(1); // Вместо точки ‘:’ — костыль, но пойдет) tm1637.display(0, (int)bulletEnergy / 10 % 10); tm1637.display(1, (int)bulletEnergy % 10); tm1637.display(2, (int)(bulletEnergy * 10) % 10); setSegments(3, 30); delay(SHOW_DELAY); tm1637.point(0); } // Вывод ошибки при превышении времени ожидания пули void showError() { setSegments(0, 121); setSegments(1, 80); setSegments(2, 80); setSegments(3, 0); delay(SHOW_DELAY); }
При правильном подключении девайс взлетел практически сразу, единственный обнаруженный недостаток — он негативно реагирует на светодиодное и люминисцентное освещение (частота пульсаций около 40 кГц), отсюда могут появляться спонтанные ошибки. Всего в девайсе предусмотрено 3 режима работы:
Приветствие после включения и переход в режим ожидания выстрела (экран заполняется полосками):

В случае ошибки — отображается «Err», и снова переход в режим ожидания:

Ну и сам замер скорости:

После выстрела сначала показывается скорость пули (с символом ‘n’), затем — энергия (символ ‘J’), причем энергия вычисляется с точностью до одного знака после запятой (на гифке видно, что при показе джоулей горит двоеточие). Корпус покрасивее найти пока не смог, поэтому просто залил все термосоплями:

Пожалуй, на этом у меня все, надеюсь, кому-то был полезен.

Критерии выбора

Только 2 критерия важны при выборе оптимального устройства:

  1. Точность показаний.
    Покупатель должен обратить внимание на процент отклонений в процессе измерения скорости. Коридор скоростей можно опустить: минимальных и максимальных значений достаточно (с запасом), чтобы выполнить тест пневматического оружия. Главное – нижний порог скорости.
  2. Средство вывода данных.
    На усмотрение покупателя, как ему удобно получать информацию, а затем использовать ее.

Второстепенный критерий – цена прибора. Тут ориентиром выступают финансовые возможности пользователя пневматики.

Принцип действия самодельного хронографа

Питание прибора может осуществляться от аккумуляторов, батареи или блока питания (от сети). Наиболее удобна автономная работа, поскольку наладку оружия не всегда можно провести в домашних условиях.

Измерение скорости производится в несколько этапов:

  • при пересечении оси первого датчика происходит обнуление отсчета времени микропроцессора;
  • после прохождения оптической оси второго датчика отсчет времени останавливается и передается для вычисления;
  • рассчитанная микропроцессором скорость пули выдается на дисплей.

Схема действия рамочного хронографа

Изготовление рамочного хронографа для пневматики своими руками с нуля требует опыта пайки, базовых знаний в электротехнике и проектировании электрических цепей. Чтобы упростить выполнение задачи, компоновку микросхемы можно заказать у радиолюбителей, обеспечив их необходимыми для работы деталями. Самостоятельно собранный хронограф – отличное вложение и экономия средств, которые можно направить на тюнинг пневматики или покупку долгожданного обвеса.

На видео испытание самодельного рамочного хронографа:

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]