СОВЕТСКИЕ И РОССИЙСКИЕ РАКЕТЫ « ВОЗДУХ-ЗЕМЛЯ » Ракеты семейства Х-15


Авиационная аэробаллистическая ракета Х-15

Ракета Х-15 имеет бескрылую схему с консольным цельноповоротным оперением (см. проекции).

Корпус делится на отсеки: приборный, грузовой с БЧ, отсек двигателя и приводов управления. За счет высокой скорости полета (при М=5 — более 1000 градусов) корпус ракеты испытывает значительные аэродинамические нагрузки и нагрев, для обеспечения требуемого запаса прочности он выполнен из титана ОТ4-1 и ВТ-5, имеет наружную теплозащиту и внутреннюю теплоизоляцию. Поверхность планера ракеты покрыта специальным металлизированным покрытием для улучшения отражательных характеристик при радиолокационном облучении. Особенностью конструкции Х-15 являлось практическое отсутствие люков — монтажных и эксплуатационных, через зазоры которых узлы могли бы подвергаться воздействию тепловых потоков. Даже при установке рулей доступ к узлам их крепления осуществлялся, с торцевых законцовок рулевых поверхностей.

Композитный носовой обтекатель сложной оживальной формы был отработан в нескольких конструктивных вариантах. У трехслойной конструкции каждый из слоев формировался из своего типа ткани с пропиткой связующей смолой и термообработкой, затем наносился следующий и т.д. Этот процесс был сложным и продолжительным. Более удачным и технологичным стало двухслойное исполнение с облицовкой стеклотканью. Обтекатель изготовлялся в жестких пресс-формах методом пропитки под давлением с одновременной запрессовкой металлических каркасов на клее. Снаружи он покрывался слоем теплозащиты.

В качестве теплозащиты металлической конструкции использовалось наружное покрытие спецматериалом, выполнявшим также радиопоглощающую роль. Слой теплозащиты требовалось наносить на поверхность корпуса, гаргротов и рулей, соблюдая заданную толщину, с последующей термообработкой для запекания. Жидкий слой материала теплозащиты наносился на металлические отсеки непосредственно в жестких пресс-формах методом пропитки под давлением, на рули — методом вакуумного «просасывания» и формирования в автоклаве.

При термообработке ряд узлов подавался уже частично собранным, и входившие в них композитные детали коробились. Для компенсации деформаций стали подавать металлические детали, изготовленные не по конструктивным, а по технологическим чертежам, размеры в которых задавались с упреждением на величину температурных деформаций, а сами изделия прогревались в жестких пресс-формах.


Управление ракетой осуществляется отклонением цельноповоротных рулей, оснащенных электромеханическими приводами. Два нижних руля, прозванных «ластами», при совместном отклонении управляли ракетой по каналу тангажа, при дифференциальном — по крену. Они же парируют кренящий момент при отклонении верхнего руля для коррекции курса.

Новшеством стал твердотопливный двигатель оригинальной конструкции, впервые в СССР использованный на ракете такого класса. Двухрежимный РДТТ-160 имеет двухкамерную конструкцию, соединяя в одном корпусе две ступени — стартовую и маршевую, разделенные перегородкой и включающиеся последовательно своими системами зажигания. В двигателе использовано смесевое топливо, сочетающее горючее высокой калорийности и окислитель, выделяющий необходимый для горения кислород. Топливо отливается непосредственно в корпус двигателя с профилированным внутренним каналом звездообразного сечения, повышающим площадь газообразования и, соответственно, рабочее давление в камере сгорания и тягу. Для длительного хранения внутренняя полость заряда двигателя герметизируется специальной оболочкой, наддутой инертным газом.

Ракета Х-15 оснащена малогабаритной специальной БЧ мощностью 350кт с термоядерным зарядом (учебные ракеты несут имитатор спец-БЧ и фугасный заряд небольшой мощности, позволяющий контролировать попадание).

Рули изготовлены из титана ОТ-4 с наружным теплозащитным покрытием, носки рулей — из жаропрочного вольфрам-молибденового сплава ВМ-1. Окантовки отсеков и гаргротов — из жаропрочной стали ВЖ-100. Ракеты Х-15П и Х-15С имеют радиопрозрачный носовой обтекатель оживальной формы с теплоизоляцией (ТКЧ-6), облицован тканью АТОМ-2.

При освоении производства ракеты Х-15 на ДМЗ были внедрены новые технологические процессы:

  • изготовления обтекателей двухслойной конструкции в жестких прессформах методом пропитки под давлением с одновременной запрессовкой на клее ВК-20 двух металлических рам.
  • нанесения теплозащитного материала МКТ непосредственно на металлические отсеки планера ракеты в жестких прессформах методом пропитки под давлением
  • нанесения теплозащитного материала на рули методом автоклавного вакуумного формования.

Для изготовления крупногабаритных деталей ракеты Х-15, требующих жестких условий термической обработки, на ДМЗ была разработана и построена крупногабаритная, высокотемпературная печь ПАП с перепадом температур по зонам ±50°. Это позволило качественно без остаточной деформации проводить термообработку деталей, в т.ч. в жестких приспособлениях (термокалибровка). Таким методом обрабатывались обечайки из сплава ВТ-20.

Модификации:

  • Х-15 — базовая,
  • Х-15П — противорадиолокационная (см.


    ). Предназначена для прорыва зоны ПВО противника самолётами дальней авиации. Оcнащается пассивной радиолокационной ГСН и осколочной БЧ.

  • Х-15С (Х-15А) — противокорабельная (см.


    ), оcнащается помехоустойчивой активной радиолокационной ГСН, работающей в мм-диапазоне. Стрельба ракетой Х-15С производится по принципу «выстрелил и забыл», но при этом перед пуском в память системы управления с носителя должны быть введены относительно точные координаты цели, ее курса и скорости. Ракета х-15С снабжена проникающей боевой частью весом 150 кг. Предлагается на экспорт под обозначением Х-15СЭ.


Ракета Х-15 запускается с роторных установок МКУ-6-1 или с одинарных балочных держателей. Носителями Х-15С могут быть самолеты Ту-160, Ту-95МС, Ту-22М3, Су-27К и Су-27ИБ. Ту-160 несет 24 ракеты Х-15 на 4-х револьверных ПУ МКУ-6–1 в 2-х отсеках. Ту-22М3 оснащается одной МКУ-6–1 в отсеке и четырьмя внешними АКУ-1, монтируемыми вместо балочных держателей ракет Х-22. Управление выпуском и уборкой АКУ-1 осуществляется от воздушной системы.

В комплекс вооружения Ту-22М3 включена бортовая система управления ракетным оружием (СУРО), обеспечивающая целеуказание, подготовку к стрельбе и управление пусковыми установками. Основой выполнения боевой задачи является обнаружение целей и установление их координат, производимое перед вылетом или в воздухе бортовыми средствами самолета. Получая от навигационного комплекса самолета данные о курсе, координатах и скорости, СУРО производит обработку информации и подготовку ИНС ракет, включающую выставку гиростабилизированных платформ, (т.е. их привязку к положению в пространстве), ввод данных о цели, определение входа в зону разрешенных пусков и автоматический контроль готовности, при выполнении которых может производиться стрельба.

Ракета сбрасывается с пусковой установки, после чего производится запуск двигателя. Двигатель, работающий на стартовом режиме, обеспечивает разгон ракеты с набором высоты до 40км. В дальнейшем двигатель переходит на маршевый режим работы, а ракета движется по траектории близкой к баллистической, разгоняясь до гиперзвуковой скорости. Включение систем самонаведения ракет Х-15П и Х-15С осуществляется на конечном участке траектории. В случае потери цели и при выключении РЛС противника движение осуществляется в точку прицеливания с помощью инерциальной системы управления (см.


). Полет Х-15 к цели на удалении 200 км занимает около 180-200 сек., практически не оставляя противнику времени на реагирование, а высотный профиль полета делает ее недосягаемой для ЗУР и истребителей.

Скачок уплотнения

Это очень важное сверхзвуковое понятие, определяющее полет гиперзвуковой ракеты и, подобно Эльбрусу, имеющее две вершины приложения, снаружи и внутри ракеты. Часто и повсеместно его путают с ударной волной, но это не одно и то же. Скачок уплотнения возникает в сверхзвуковом потоке как невозможность возмущений воздуха от каких-либо обтекаемых препятствий рассасываться вперед. Они движутся лишь со скоростью звука и скапливаются перед источником возмущений, не в силах убежать от него вверх по сверхзвуковому потоку. Поток напирает и трамбует это скопление возмущений, создавая здесь уплотнение воздуха. Оно происходит сильно и резко, скачкообразно, на расстоянии пары пробегов молекул за десятимиллиардную долю секунды. Эта мгновенная ступенька роста плотности и есть скачок уплотнения.

И так же скачкообразно происходит торможение потока, мгновенно сбавляющего скорость и текущего за скачком медленнее. Снижение кинетической энергии потока переходит в прибавку потенциальной энергии сжатия и тепла. Со скачком плотности так же резко вырастают давление и температура. В скачке уплотнения часть энергии потока теряется, расходуется, образуя газодинамические потери. Это вызывает добавочное замедление потока. Потери энергии в скачках разные, и с этим различием можно работать.

Скачок уплотнения бывает прямым и косым

. Прямой скачок стоит перпендикулярно потоку, «прямо», и тормозит поток до дозвука, завершая сверхзвуковое течение. В нем самые большие потери энергии. Косые скачки лежат под углом к потоку, оставляют его за собой сверхзвуковым и дают меньше потерь. Если нужно замедлить и уплотнить поток на заданную величину, то сжатие одним скачком даст больше потерь, чем суммарно два или три скачка послабее. Косые скачки уплотнения в двигателе сжимают воздух последовательным каскадом с меньшими потерями энергии, которые неумолимо тратятся из энергии движения ракеты, замедляя ее.

За скачком

у газа могут быть две дороги. Если причина скачка рядом — любая твердая поверхность под углом атаки, клин, конус, другая форма,— то воздух течет по ней сжатым. За скачком продолжается сжатый, нагретый и подтормозившийся поток. Тогда скачок уплотнения — передняя поверхность и начало сжатого потока.

А когда за скачком нет возмущающего предмета, например в открытой атмосфере, то сжатый воздух за скачком начинает беспрепятственно расширяться. Чем больше степень сжатия, тем мощнее расширение. Его быстрота рождает инерцию, и расширяющийся воздух проскакивает параметры атмосферы без остановки на них. Возникает разрежение, которое вскоре схлопывается окружающим давлением атмосферы до выравнивания с собой.

Отклонение от равновесия с последующим свободным возвратом к нему — это волновой процесс. А вся конструкция — скачок уплотнения, область сжатого воздуха за ним и область разрежения — составляет ударную волну. В ней скачок уплотнения лишь передняя поверхность толщиной в ту самую пару пробегов молекул. Ударная волна напоминает стопку из двух блинов, сжатия и разрежения, с тонким пригаром скачка уплотнения на переднем блине сжатия.

В гиперзвуковой ракете

скачок уплотнения работает и внутри, и снаружи. Можно сказать, он создает гиперзвуковую ракету, являясь ее скульптором. Главным работает первый путь — образование сжатых потоков. Они возникают под крыльями и корпусом из-за угла атаки и создают подъемную силу ракеты. Системы сверхзвуковых скачков уплотнения организованы внутри двигателя, обеспечивая его правильную работу.

Полет шмеля, или Игра в крестики-нолики

Гиперзвуковой двигатель сразу меняет летательный аппарат, наделяя его большими возможностями и создавая из него новое боевое средство. Дальность гиперзвуковой ракеты может намного превосходить дальность планера. При более интенсивном маневрировании скорость гиперзвуковой ракеты не будет падать, поддерживаемая двигателем. А это уже напрямую боевое качество — степень неуязвимости для перехвата. Гиперзвуковую крылатую ракету сложнее перехватить из-за набора ее козырей «дальность плюс маневрирование плюс скорость», превосходящего возможности гиперзвукового планера.

Маневрирование

— «броня» гиперзвуковой ракеты, главный фактор неуязвимости. Маневрирование препятствует перехвату, постоянно меняя прицеливание противоракет и выводя их вблизи на критические режимы полета, чреватые прекращением погони. Противоракеты вынуждены постоянно вырабатывать поправки своего наведения и менять полет, с приближением к цели все интенсивнее, повышая свои перегрузки до критического уровня. Организация противоракетного маневрирования может строиться на разных алгоритмах.

Представим, что система управления полетом виртуально отсекает перед собой кусок расчетной траектории длиной 10 или 15 километров. На дальнем конце этого отрезка система управления рисует перпендикулярный полету квадрат со сторонами в пару километров, пронзенный траекторией по центру. Квадрат разбивается на равные клетки, как крестики-нолики. Так пространство перед ракетой расщепляется на пучок протянувшихся вперед расходящихся пространственных сегментов, каждый из которых упирается в свою клеточку «крестиков-ноликов».

В составе системы управления полетом «зашит» генератор случайных чисел. Он строго случайным образом выбрасывает свой выбор в одну из клеток «крестиков-ноликов». В выбранной клетке рисуется прицельный крестик, прочие остаются ноликами. После чего система управления направляет ракету в этот случайно поставленный крестик.

Пролетев отрезок и оказавшись в клетке с крестиком, тем самым немного сместившись от центральной спицы — расчетной траектории, система управления отрезает от дальнейшей траектории очередной кусок, и игра повторяется. На конце отрезка снова рисуются поперек «крестики-нолики», строго случайным образом ставится прицельный крестик.

Почему выбор крестиков строго случайный? Будь в этом хоть какая-то система — ее могут «раскусить» более мощные вычислительные средства и алгоритмы противника, наводящие на крылатую ракету их противоракету. Будущие движения по любой системе можно верно спрогнозировать и направить средство перехвата в верную точку встречи. Но случайный выбор спрогнозировать нельзя.

Специальные логические блоки в составе системы управления полетом не позволяют ракете выходить за пределы двухкилометрового квадрата. Иначе шаг за шагом можно улететь в глубокие отклонения от траектории, критически удалиться от нее. А потом расчетную траекторию не нагонишь. Логические блоки следят за соотношением локальных перемещений по «крестикам-ноликам» и генерального направления полета к цели. В итоге движение крылатой ракеты напоминает нечто среднее между полетом шмеля и раскачиванием кленового листа, но выполняемое в гиперзвуковом формате. Это критически затрудняет перехват ракеты, но не делает его невозможным — никогда не говори «никогда».

Полет гиперзвуковой ракеты

складывается из крупных географических элементов обхода проблемных зон и противоракетных объектов и наложенного на них локального противоракетного маневрирования, которое может усиливаться при информации о запуске противоракеты. Выбор архитектуры и режимов маневрирования — дело тщательное и тоже не попадающее в широкий информационный обмен.

Смена уже на подходе

Но развитие технологий идет быстрее, и при всех модернизациях начинает нарастать отрыв от того, что можно сделать сегодня. Так возникает новое поколение самолетов. Орла и сову сменит следующее поколение авиационных «стратегов», уже создающихся и идущих к испытаниям. В обоих полушариях Земли оно теперь оформляется одинаково, в виде скрытного дозвукового летающего крыла. На смену Ту-160 готовится ПАК ДА – перспективный авиационный комплекс дальней авиации. Дозвуковой самолет делает ставку на малозаметность. Различные оценки подразумевают его существенное уменьшение в размерах и массе, предполагаемой на уровне 150 тонн, с дальностью полета до 15 тысяч километров. Линейка вооружения ожидается широкой — с охватом как ракетной, так и бомбовой номенклатуры. ПАК ДА станет более универсальным, перекрывая линейку целей В-2.

В-2 Spirit уступит место внешне похожему на него В-21 Rider, который продолжит развитие принципа малозаметности и уменьшения — при отказе от погони за дальностью и грузоподъемностью. За счет развитой сети баз и глобальной возможности дозаправок в воздухе боевой радиус В-21 сократится до 4000 километров, а вес полезной нагрузки ограничится 12-13 тоннами. Высокая экономичность двигателей сократит расход топлива. Все это уменьшит размеры самолета и еще больше усилит его малозаметность. А то, что он примерно вчетверо дешевле своего предшественника, позволит строить куда больше самолетов (при сопоставимой боевой мощи одного самолета), повышая тем самым суммарный потенциал нанесения удара этим сегментом стратегических самолетов.

Одновременно с новыми дозвуковыми крыльями-«невидимками» могут появиться и сверхзвуковые «стратеги», обладающие продвинутыми аэродинамическими чертами, новыми возможностями и высокими боевыми характеристиками. В какие сроки начнет летать новая техника, чем будет вооружаться, какова окажется в действительности и как будет выполнять свои стратегические задачи, покажет время.

Стратосферные путники

Атмосфера, в которой летят самолеты, делится на две непохожие части, две разные «среды обитания». Нижняя часть атмосферы называется тропосферой. Она копит в себе энергию и буйство солнечного тепла, с помощью которого происходят практически все погодные явления. Тропосферу характеризуют динамика и турбулентность, она насыщена разнообразными вертикальными движениями среды и облаками всех видов. На высоте 10-12 километров тропосфера отделяется довольно ощутимой границей от другого пространства, находящегося выше, – стратосферы.

Стратосфера устроена иначе: уложена ровными слоями, не перемешивающимися динамически. Поэтому и называется стратосферой, от латинского stratum – «слой». В ней практически нет вертикальных движений, поэтому полет в ней обычно спокойный, без тряски, а низкая плотность воздуха позволяет развивать высокую скорость. Спокойствие стратосферы экономит расход топлива на парирование различных возмущений, ведь крылья, стабилизаторы и кили создают свою силу в отклоненном положении, а это всегда добавочное сопротивление воздуха. Для небольших дальностей это не так существенно, но на стратегических дальностях мелочей не бывает.

Кроме того, отсутствие турбулентности снижает нагрузку на самолет и уменьшает накопление усталости металла, продляя эксплуатационный ресурс. Поэтому стратосфера для стратегических самолетов – основа большой (и многократной) дальности. Однако используют они эту основу по-разному. Оба наших героя пользуются стратосферой как эшелоном для покрытия стратегического расстояния, как спокойной и быстрой автотрассой. По которой можно мчаться, пока не приблизился к воздушному пространству противника. И тут начинают проявляться отличия. Ту-160 может и дальше пойти со сверхзвуковой быстротой, а В-2 снизится и будет красться максимально близко к рельефу, стараясь совершенно слиться с местностью.

Максимальная высота полета обоих самолетов примерно одинаковая: 15 200 метров у В-2 и 16 000 метров – у Ту-160. Почему именно столько? Дело в том, что стратосфера начинается на разной высоте в разных широтах Земли. На полюсах нижняя граница стратосферы лежит на высоте восьми-девяти километров. На экваторе накачиваемая экваториальными лучами Солнца тропосфера бурлит сильнее, разгоняя восходящие потоки на большую высоту, и выталкивает стратосферу выше, к высотам 15-17 километров. Высота максимального полета В-2 и соответствует способности лететь в стратосфере на любых широтах, оставаясь в ее спокойных слоях и экономя топливо на минимизации управляющих усилий.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]