Назначение, характеристики и основные параметры антенн РЛС

Статья на перевод предложена alessandro893. Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная

Дипольная антенна

Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Радар на борту

К идее использования радиолокационных средств на самолетах пришли несколько лет спустя после того, как появились первые наземные РЛС. Хотя в системах радионавигации и в приборах «слепой посадки» радиотехнические средства начали применяться уже с 1933 года.

В СССР именно наземная станция «Редут» явилась прототипом первой бортовой радиолокационной станции (БРЛС). Одной из основных проблем стало размещение аппаратуры на самолете – комплект станции с источниками питания и кабелями должен был весить примерно 500 кг. На одноместном истребителе того времени разместить такую аппаратуру было нереально. И выход был найден – разместить станцию было решено не на одноместном самолете, а на двухместном Пе-2.


РЛС «Коршун» на МиГ-17П

Первая отечественная бортовая радиолокационная станция была названа «Гнейс-2», и в июне 1943 года она была принята на вооружение. К концу 1944 года было выпущено более 230 станций «Гнейс-2».

А в победном 1945 году началось серийное производство самолетной радиолокационной станции «Гнейс-5с». Дальность обнаружения цели достигала 7 км. Но главной новинкой этой модификации было то, что начиная с дальности 1,5 км данные воздушной обстановки дублировались на специальном индикаторе, установленном в кабине летчика. Это позволяло пилоту самостоятельно выводить самолет в атаку.

Дальнейшее развитие бортовых РЛС было связано с появлением реактивной авиации. Обнаружить самолеты и крылатые ракеты врага помогали такие установки, как «Изумруд», «Сокол» и «Сапфир» в различных модификациях.

Антенна в виде несимметричного вибратора (монопольная)

Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности

Антенна «волновой канал», антенна Яги-Уда, антенна Яги

Антенна Яги – направленная антенна, состоящая из нескольких параллельных элементов, расположенных на одной линии. Часто состоят из одного элемента-облучателя, обычно диполя или петлевого вибратора. Только этот элемент испытывает возбуждение. Остальные элементы паразитные – они отражают или помогают передавать энергию в нужном направлении. Облучатель (активный вибратор) обычно находится вторым с конца, как на картинке ниже. Её размер подбирается с целью достижения резонанса при наличии паразитных элементов (для диполя это обычно 0,45 – 0,48 от длины волны). Элемент слева от облучателя – отражатель (рефлектор). Он обычно длиннее облучателя. Отражатель обычно один, поскольку добавление дополнительных отражателей мало влияет на эффективность. Он влияет на отношение мощностей сигналов антенны, излучаемых в направлениях назад/вперед (усиление в максимальном направлении по отношению к противоположному). Справа от облучателя находятся элементы-директоры, которые обычно короче облучателя. У антенны Яги очень узкий диапазон рабочих частот, а максимальное усиление составляет примерно 17 дБ.

Диаграмма направленности

АФАР и «умная обшивка» для Су-57

Современные БРЛС обеспечивают обнаружение и сопровождение воздушных и наземных целей в режимах «воздух-воздух», «воздух-поверхность», а также радиокоррекцию, полетное задание и выдачу целеуказания на применение управляемого бортового оружия.

Одна из современных российских разработок в области радиолокации − первая отечественная бортовая РЛС с активной фазированной антенной решеткой (АФАР) «Жук-АЭ» для истребителя МиГ-35. В ней разработчики применили новейшие технологии в области радиоэлектроники, благодаря чему по соотношению эффективности к стоимости «Жуку» нет равных не только в России, но и на международном рынке.


БРЛС «Жук-АЭ»

Антенны радиолокационной станции Н036 «Белка» для новейшего российского истребителя Су-57 также выполнены по технологии АФАР. Отметим, что наличие АФАР является одним из условных признаков истребителей пятого поколения.

В 2022 году российские истребители пятого поколения Су-57 получили так называемую «умную обшивку». Антенны станции Н036 «Белка» размещаются не только в носу машины, но и распределены по поверхности самолета, всего шесть, но точная конфигурация пока не разглашается. Неизвестна пока и большая часть характеристик радиолокационной системы Су-57. Но разработчики заявили, что в ходе летных испытаний станция Н036 «Белка» подтвердила заявленные параметры.

По оценке экспертов, такая «умная обшивка» обеспечит пилотам российского истребителя пятого поколения новые возможности, в частности круговой обзор на сотни километров. Использование антенн, работающих в разных диапазонах, также признано эффективным ответом американским стелс-технологиям.

Уголковая антенна

Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности

Спиральная антенна

Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности

Ромбическая антенна

Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности

Двумерная антенная решётка

Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов — 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности

Рупорная антенна

Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности

Параболическая антенна

Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности

Лучи смерти и британские радиолокаторы

Теперь отправимся в Великобританию, у которой к 1935 году, в отличие от Германии, США и СССР, больших успехов в разработке радиолокаторов не было. Занимательно, что к созданию первого радара английских оборонщиков подтолкнули слухи о наличии у немцев генераторов лучей смерти, способных уничтожать самолеты противника на расстоянии. Проверить возможность создания такого оружия поручили радиофизику Национальной физической лаборатории Роберту Уотсону-Уатту – потомку изобретателя паровой машины Джеймса Уатта.

Вместе с помощником ученый доказал утопичность уничтожения авиатехники лучами, но в процессе работы пришел к выводу, что отраженные от самолета радиоволны можно улавливать и тем самым обнаруживать технику врага. С идей разработки радиоопределителя физик обратился к заказчику исследования.


Роберт Уотсон-Уатт проводит первые испытания радара

Инициатива Уотсона-Уатта была поддержана, и 26 февраля 1935 года он провел первые успешные испытания своего радиоопределителя направления, которому удалось засечь летящий бомбардировщик на расстоянии 13 км. К 1936 году эта цифра достигла 150 км. К началу Второй мировой войны в Великобритании была построена первая в мире национальная система радиолокационной защиты. Она включала в себя более 20 станций и перекрывала подлеты к Британским островам по всем основным направлениям возможной атаки. Станции располагались по побережью цепочкой, из-за чего система получила название Chain Home.

Изобретение Роберта Уотсона-Уатта остановило авиавторжение Германии на Британские острова. Радиолокаторы засекали самолеты противника и давали британским силам ПВО 20-минутное преимущество. В течение трех месяцев немцы потеряли над побережьем Великобритании 1887 машин – почти половину всего боевого флота.

Антенна Кассегрена

Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Радиолокационная станция

(РЛС), радиолокатор, радар, устройство для наблюдения за различными объектами (целями) методами
радиолокации.
Основные узлы РЛС — передающее и приёмное устройства, расположенные в одном пункте (т. н. совмещенная РЛС) или в пунктах, удалённых друг от друга на некоторое (обычно значительное) расстояние (двух- и многопозиционные РЛС); в РЛС, применяемых для
пассивной радиолокации,
передатчик отсутствует. Антенна может быть общей для передатчика и приёмника (у совмещенной РЛС) или могут применяться раздельные антенны (у многопозиционных РЛС). Важная составная часть приёмного устройства РЛС (после собственно приёмника) — световой индикатор на электроннолучевой трубке (ЭЛТ), а в современных (середины 70-х гг.) РЛС наряду с индикатором — ЦВМ, автоматизирующая многие операции по обработке принятых сигналов. Основные характеристики РЛС: точность измерений, разрешающая способность, предельные значения ряда параметров (максимальная и минимальная дальность действия, сектор и время обзора и др.), помехоустойчивость. К основным характеристикам относят также мобильность РЛС, её массу, габариты, мощность электропитания, срок службы, количество обслуживающего персонала и многие др. эксплуатационные параметры.

Появление и развитие РЛС.

Первые РЛС были станциями обнаружения самолётов. 5 стационарных импульсных РЛС было установлено на юго-западном побережье Великобритании в 1936. Они работали на сравнительно длинных (метровых) волнах, были весьма громоздки и не могли обнаруживать самолёты, летевшие на малой высоте. Тем не менее вскоре цепочка таких станций была установлена вдоль всего английского побережья Ла-Манша; она показала свою эффективность при отражении налётов немецкой авиации во время 2-й мировой войны 1939—45. В США опытная импульсная РЛС была установлена на корабле и прошла всесторонние испытания в 1937. После этого работы по созданию РЛС различного назначения получили в США бурное развитие, и к началу 40-х гг. были созданы РЛС сантиметрового диапазона волн для обнаружения самолетов, летящих на большом удалении.

В СССР первые опыты по радиообнаружению самолётов были проведены в 1934. Промышленный выпуск первых РЛС, принятых на вооружение, был начат в 1939. Эти станции (РУС-1) с непрерывным излучением, модулированным звуковой частотой, располагались цепочкой вдоль некоторой линии и позволяли обнаруживать самолёт, пересекающий эту линию. Они были применены на Карельском перешейке во время советско-финляндской войны 1939—40 и на Кавказе во время Великой Отечественной войны 1941—45. Первая импульсная радиолокационная установка была испытана в 1937. Промышленный выпуск импульсных РЛС (РУС-2, «Редут») начался в 1940. Эти станции имели одну приёмо-передающую антенну и помещались вместе с источником электропитания в кузове автомашины. Они позволяли обнаруживать самолёты при круговом обзоре воздушного пространства на расстояниях (в зависимости от высоты полёта) до 150 км.

В 1940 Ленинградским физико-техническим институтом (руководитель работ Ю. Б.
Кобзарев
) было закончено сооружение стационарной РЛС для системы ПВО. Антенны станции располагались на большой высоте (20
м
), что обеспечивало большую дальность обнаружения (~ 250
км
) и давало возможность обнаруживать сравнительно низко летящие самолёты. Во время Великой Отечественной войны, кроме станций «Редут», было развёрнуто производство надёжных портативных станций «Пегматит», которые можно было легко перевозить в упакованном виде и быстро устанавливать в любом помещении. Впоследствии станции «Пегматит» были усовершенствованы так, что они позволили определять, кроме дальности и азимута самолёта, его высоту. В конце войны совершенствование РЛС происходило в направлении как повышения дальности их действия и точности измерений, так и автоматизации отдельных операций посредством автоматических
следящих систем
для измерения дальности и слежения по угловым координатам (в станциях орудийной наводки), автоматических счётных устройств (в станциях для «слепого» бомбометания) и т.д.

После 2-й мировой войны, с развитием авиации (повышением высоты, скорости полёта и манёвренности самолётов), появилась необходимость создания РЛС, способных работать в условиях сложной обстановки — при большом количестве объектов и действии умышленных помех. Повышение точности измерения координат (в т. ч. благодаря новым методам их измерения), сопряжение РЛС с вычислительными машинами и общей системой радиоуправления снарядами-ракетами существенно изменили технические и тактические параметры РЛС, ставших важнейшим звеном автоматизированной системы управления средствами ПВО.

Появление в 50—60-х гг. ракетной и космической техники привело к созданию РЛС для решения ряда новых задач (см. в ст. Радиолокация

). Были разработаны разнообразные РЛС для решения многих задач науки и народного хозяйства (см., например,
Радионавигационная система, Метеорный радиолокатор, Планетный радиолокатор, Радиолокационная астрономия, Радиолокация в метеорологии
и т.д.).

Основные типы РЛС.

РЛС различают прежде всего по конкретным задачам, выполняемым ими автономно или в комплексе средств, с которыми они взаимодействуют, например: РЛС систем управления воздушным движением, РЛС обнаружения или наведения зенитных управляемых ракет систем ПВО, РЛС для поиска космических летательных аппаратов (КЛА) и сближения с ними, самолётные РЛС кругового или бокового обзора и т.д. Специфика решения отдельных задач и их широкий спектр привели к большому разнообразию типов РЛС. Например, для повышения точности стрельбы по самолётам в головках зенитных снарядов устанавливают миниатюрные РЛС, измеряющие расстояние от снаряда до объекта и приводящие в действие (на определённом расстоянии) взрыватель снаряда; для своевременного предупреждения самолёта о приближении со стороны его «хвоста» др. самолёта на нём устанавливают РЛС «защиты хвоста», автоматически вырабатывающую предупредительный сигнал.

В зависимости от места установки РЛС различают наземные, морские, самолётные, спутниковые РЛС и т.д. РЛС подразделяют также по техническим характеристикам: по несущей частоте

(рабочему диапазону длин волн) — на РЛС метрового, дециметрового (ДМ), сантиметрового (СМ), миллиметрового (ММ) и др. диапазонов; по методам и режимам работы — на РЛС импульсные и с непрерывным излучением, когерентные и с некогерентным режимом работы и т.д.; по параметрам важнейших узлов РЛС — передатчика, приёмника, антенны и системы обработки принятых сигналов, а также по др. техническим и тактическим параметрам РЛС.

РЛС точного измерения координат, называются станциями орудийной наводки (СОН), определяют с высокой степенью точности координаты (азимут, угол места, дальность) воздушных, морских и наземных объектов (рис. 1

). Для зенитной артиллерии появление этих станций означало техническую революцию. Резкое повышение точности измерения координат, в первую очередь угловых, стало возможным после освоения СМ диапазона волн, позволившего формировать в СОНах посредством антенн высоконаправленное излучение радиоволн. При этом резко повысилось использование излучаемой мощности в нужных направлениях и удалось в значительной мере избавиться от влияния Земли, местных предметов и ряда др. помех работе РЛС.

Использование СМ диапазона позволило создать панорамные самолётные РЛС кругового обзора земной поверхности (рис. 2

), сыгравшие важную роль во время 2-й мировой войны при решении задачи «слепого» бомбометания, а также при поиске и уничтожении на море подводных лодок. Для этих станций характерна высокая степень различения отдельных деталей на земной поверхности (мостов, сооружений, железных дорог и т.д.) или на море (перископов подводных лодок и т.п.).

Освоение СМ диапазона привело также к созданию РЛС обнаружения самолетов и наведения на них самолётов-перехватчиков, которые, используя данные, полученные от РЛС дальнего обнаружения, или работая автономно, обнаруживают самолёты и одновременно измеряют их координаты — дальность, азимут и высоту полёта (например, т. н. методом V-луча). Для реализации этого метода применяют 2 антенны, одна из которых имеет диаграмму направленности, узкую по азимуту и широкую в вертикальной плоскости, а другая — диаграмму направленности такой же формы, но отклоненную от вертикальной плоскости на угол, равный 45° (рис. 3

). При совместном вращении обеих антенн азимут и дальность объекта определяются посредством первой антенны, а высота — по промежутку времени, через который объект фиксируется второй антенной.

РЛС бокового обзора, предназначенные для картографирования земной поверхности, решения задач воздушной разведки и т.д., имеют высокую разрешающую способность, определяющую качество радиолокационного изображения, его детальность. Это достигается либо значительным увеличением размера антенны, располагаемой вдоль фюзеляжа самолёта, что позволяет увеличить разрешающую способность по сравнению с панорамными РЛС кругового обзора на порядок, либо применением метода искусственного раскрыва антенны (рис. 4

), позволяющего приблизиться к разрешающей способности оптических средств наблюдения (
рис. 5
); при этом разрешающая способность не зависит от дальности наблюдения и длины волны зондирующего сигнала. В РЛС с искусственным раскрывом антенны часто используют сложные оптические системы многоканальной (по дальности) обработки сигналов с когерентным накоплением их в каждом канале. Сопряжение таких систем с фотографическими устройствами позволяет получать высококачественную запись информации.

РЛС систем ПРО крупных городов и промышленных объектов (в США, по данным иностранной печати) образуют радиолокационный комплекс, включающий РЛС обнаружения, сопровождения и опознавания целей и РЛС наведения противоракет, работающие главным образом в СМ, реже в ДМ диапазонах волн (рис. 6

). Такая многофункциональная РЛС содержит несколько сотен передатчиков с импульсной мощностью каждого от 0,1 до 1
вт
,
фазированную антенную решётку
, работой которой управляет ЦВМ, несколько тыс.
параметрических усилителей
, установленных во входных цепях приёмников. За рубежом существуют проекты наземных систем ПРО на основе применения мощных
лазеров
, предназначенных для поражения целей. Такие системы должны работать совместно со средствами автоматического слежения и фокусировки лазерного луча высокой интенсивности, в том числе с РЛС грубого слежения, обеспечивающей получение ориентировочных данных о приближающейся цели, с РЛС на лазерах для точного слежения за целью (см.
Оптическая локация
) и с системой распознавания истинной цели при наличии ложных целей. Благодаря возможности получения узкого луча и малым габаритам РЛС на лазерах их предполагается применять также на КЛА и спутниках.

РЛС слежения за искусственными спутниками 3емли (ИСЗ) и измерения их траекторий различают прежде всего по составу и количеству измеряемых параметров. В простейшей однопараметрической РЛС ограничиваются измерением только доплеровской частоты (см. Доплера эффект

), по характеру изменения которой в месте расположения РЛС определяют период обращения ИСЗ и др. параметры его орбиты. Орбиту ИСЗ можно точно определить, применив на трассе полёта ИСЗ несколько РЛС СМ диапазона, например точных импульсных РЛС —
радиодальномеров
, работающих с ответчиком на борту ИСЗ, у которого нестабильность задержки ответного импульса относительно мала. Эти РЛС с параболическими антеннами обеспечивают в режиме слежения определение угловых координат ИСЗ с точностью порядка нескольких угловых минут при коническом сканировании и порядка 1 угловой минуты при моноимпульсном методе. Т. о., эти трёхпараметрические РЛС являются некоторым развитием СОН, отличаясь от них построением основного канала автодальномера, многошкальностью и сохранением высокой точности слежения по дальности (ошибка измерения при космических скоростях объекта порядка 10
м
). Импульсный режим позволяет реализовать одновременную работу нескольких РЛС с одним ответчиком. Применяют и четырёхпараметрические РЛС с когерентным ответчиком на борту, в которых дополнительное измерение радиальной скорости космических объектов обеспечивается при более простом режиме непрерывных колебаний. Сохранение импульсного режима и измерение радиальной скорости по частоте Доплера требует применения в РЛС импульсного когерентного режима, при котором вместо простого магнетронного передатчика применяется СВЧ усилитель мощности (например, на клистроне) и более сложный импульсный когерентный ответчик. Станции, измеряющие 6 параметров движения объекта — дальность, 2 угловые координаты и 3 их производные (т. е. радиальную и 2 угловые скорости), — применяют, например, при измерениях этих параметров, осуществляемых из одного пункта на активном участке полёта ракеты или КЛА. Сложность таких РЛС связана с построением многих каналов точного фазового измерения угловых координат (точность ~ 10 угловых секунд).

Другое направление использования РЛС для слежения за ИСЗ с высотой полёта в несколько сотен км

и измерения их траектории основано на применении точных пеленгаторов ДМ диапазона со значительно более простыми (неследящими) антеннами фазовых угломерных каналов, обладающими в этом диапазоне достаточной эффективной площадью, а также экономичных и простых бортовых передатчиков, работающих в режиме непрерывных колебаний.

Для слежения за ИСЗ на расстояниях ~40 тыс. км

(стационарные ИСЗ или ИСЗ с эллиптической орбитой типа «Молния») применяют РЛС со следящими (по программе полёта — в ДМ диапазоне и автоматически — в СМ диапазоне) полноповоротными параболическими антеннами.

Планетная РЛС, измеряющая расстояние до планеты, параметры её движения и др. физические характеристики, отличается большой эффективной поверхностью антенны, большой мощностью передатчика и высокой чувствительностью приёмного устройства. Длительность зондирующего сигнала таких РЛС ограничена временем прохождения радиоволн от Земли до планеты и обратно, которое равно, например, для Венеры ~5 мин

, для Марса ~ 10
мин
и для Юпитера ~ 1
ч.
Так, в планетной РЛС, посредством которой сотрудники института радиотехники и электроники АН СССР изучали Марс, дальномерные измерения проводились фазовым методом по огибающей колебаний с несущей частотой 768
Мгц
, модулированных по амплитуде колебаниями с частотами 3 и 4
гц
, а измерения радиальной составляющей скорости — доплеровским методом на несущей частоте. Принимаемый сигнал во время сеансов наблюдения запоминался (записывался магнитофоном), а задержка огибающей принятого сигнала определялась (в процессе его многократного воспроизведения за пределами сеанса связи) корреляционным методом — по максимуму выходного сигнала
коррелометра
при различных задержках опорного сигнала. Величина доплеровского смещения частоты определялась при помощи селективных электрических фильтров, настроенных на определённые резонансные частоты.

3агоризонтные РЛС, используемые (в США, по данным иностранной печати) в декаметровом (коротковолновом) диапазоне волн для наблюдения на расстояниях в несколько тысяч км

(например, с целью раннего обнаружения пусков баллистических ракет и грубого определения их координат, обнаружения ядерных взрывов, наблюдения за различными областями ионосферы, за полётом ИСЗ и т.д.), представляют собой наземные стационарные установки со сложными большими антеннами типа многоэлементных
антенных решёток
и мощными передатчиками с импульсной мощностью несколько десятков
Мвт.
Как правило, такие РЛС двух- или многопозиционные. Для них характерны многоканальное построение (например, со 120 и более каналами в диапазоне частот 4—6
Мгц
), возможность устанавливать различные длительности импульсных сигналов и частоту их повторения и соответственно регулировать ширину полосы частот в приёмнике и др. характеристики, находя оптимальный режим в зависимости от состояния ионосферы и характера поставленной задачи.

Лит.:

Бартон Д., Радиолокационные системы, пер. с англ., М., 1967; Леонов А. И., Радиолокация в противоракетной обороне, М., 1967; Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970; Мищенко Ю. А., Загоризонтная радиолокация, М., 1972.

А. Ф. Богомолов.

Оглавление

Антенна Грегори

Слева – антенна Грегори, справа — Кассегрена
Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Первые советские радары

В 1920-е годы ученые в СССР создали импульсную радиолокационную установку и смогли с помощью отраженного радиосигнала измерить расстояние до ионосферы. В 1925 году физики Введенский, Симанов, Халезов и Аренберг указали на возможность применения для радиолокации ультракоротких радиоволн. А в 1934 году в Ленинграде начались первые полноценные опыты с аппаратурой радиообнаружения – в январе радиолокационным методом на расстоянии 600 метров был найден самолет, летящий на высоте 150 метров.

Оборудование было создано в Центральной радиолаборатории группой Ю.К. Коровина при поддержке Ленинградского электротехнического института. Руководил экспериментом военный инженер М.М. Лобанов, который сыграл ключевую роль в становлении радиолокационного направления в промышленности. В том же 1934 году на Ленинградском радиозаводе были выпущены опытные образцы радиолокационных станций (РЛС) «Вега» и «Конус» для системы радиообнаружения самолетов «Электровизор» ученого П.К. Ощепкова. Таким образом, 1934 год можно считать годом рождения первого отечественного радара.


РЛС дальнего обнаружения «РУС-2»

В 1938 году начинается серийное производство РЛС РУС-1 и РУС-2 «Редут», которые станут основой противовоздушной обороны в начале Великой Отечественной войны. Благодаря установленной на крейсере «Молотов» радиолокационной станции были отражены первые атаки немецких бомбардировщиков на Севастополь 22 июня 1941 года. А месяц спустя комплекс РУС-2, расположенный в 100 км от Москвы, обнаружил 200 самолетов, летящих бомбить столицу. Тогда атака была отражена, немцы развернулись, потеряв 22 машины.

В работе над первыми станциями РУС-1 принимал участие выдающийся физик А.А. Пистолькорс, создатель научной школы радиоэлектроники. Станция РУС-2 «Редут» выпускалась на заводе №339 и стала самой массовой РЛС времен войны.

Офсетная (асимметричная) антенна

Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали. У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

«Крестные отцы» радара

Как и в случае со многими другими изобретениями, дату точного создания радара и имя его создателя зафиксировать сложно. В первой половине XX века ученые ведущих стран двигались параллельными путями, приходя к тем или иным решениям иногда практически одновременно. А появление таких сложных устройств, как радар, всегда является результатом работы многих людей и коллективов. Однако историки едины во мнении, что приближающаяся Вторая мировая война стала своего рода ускорителем для многих ключевых технологий XX века, в том числе и для радиолокации.

Теоретические основы для радиообнаружения объектов были заложены еще в конце XIX века, но для их практического воплощения потребовались еще долгие годы и изобретение большого количества вспомогательных для радиолокатора устройств и технологий. За пальму первенства в создании радара в условиях секретности боролись технологические лидеры – Великобритания, Германия, США, Франция и СССР.

Еще в 1886 году немецкий физик Генрих Герц обнаружил, что радиоволны способны отражаться телами. А в 1897 году «отец радио» Александр Попов при испытаниях радиоприемника поймал радиоволны, отраженные от металла корабля, попавшего между передатчиком и приемником. В 1900 году Никола Тесла предположил, что объекты на земле и в воздухе можно находить с помощью отраженных электромагнитных волн.

Щелевая антенна

Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности

Предисловие

Читатели журнала «Luftfahrt International» постоянно просят редакцию рассказать о радиолокаторах времен Второй Мировой войны. Прежде чем мы в более поздних выпусках разместим отдельные материалы о тех или иных радиолокационных системах, мы хотели бы ознакомить читателей с докладом 1944 года, в котором описывались исследования аэродинамики антенн радиолокаторов. Мы считаем данный материал настолько интересным, что решили рассказать об этих исследованиях. Особый интерес, как нам представляется, читатели обратят на фотографии.

Для неспециалиста в области авиации распознавание у современных самолётов – истребителей, разведчиков и бомбардировщиков – оборудования для обнаружения целей и устройств слежения представляет собой очень сложную задачу. Внедрение в конструкцию самолетов радиолокаторов и других электронных и оптических измерительных приборов в качестве единого целого стало возможным лишь к окончанию Второй Мировой войны путем разработки соответствующих комплексных систем.

В Германии в течение длительного времени работали над радиолокационными устройствами с дециметровым диапазоном волн. В это же время союзники уже вели исследования в сантиметровом диапазоне длин волн.

Антенные системы большинства антенн немецких радиолокационных станций, применявшихся в годы Второй Мировой войны, были выполнены в виде т.н. «проволочных заграждений» – решеток, крепившихся в носовой части фюзеляжа самолёта или на консолях крыла. В данной статье мы расскажем о наиболее известных антенных системах, широко применявшихся в радарах ночных истребителей и самолетов-разведчиков.

А вот и сам отчет.

Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]


Радар с МИГ-31
С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой

Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель

Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор

Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот

Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Аэродинамика радиолокационных антенн

Введение

Эффективность применения средств противовоздушной обороны во многом зависит от скорости обнаружения самолётов противника и от точного определения места их нахождения. Ночью и в условиях плохой погоды обнаружение и определение местонахождения самолётов противника осуществляется при помощи бортовых радиолокаторов, работающих на больших частотах и использовавших отраженный сигнал коротких волн. Излучение очень коротких высокочастотных импульсов и приём отраженных от самолётов и кораблей сигналов, а также применение прочих высокочастотых сигналов позволяет в заданных границах обнаруживать самолёты и корабли противника. В качестве антенн для излучения волн и приёма отраженных от целей сигналов применяются системы диполей, установленных на внешней стороне цельнометаллического самолета. Данное оборудование создает дополнительное аэродинамическое сопротивление, в результате чего снижаются скорость полёта и скороподъёмность. Вследствие этого предпринимаются серьёзные исследования, направленные на снижение возникающего аэродинамического сопротивления. Также выбираются места их крепления на самолете и их удобное расположение.

Для определения потерь скорости при установке антенн радиолокаторов отдел Имперского министерства авиации (Reichsluftfahrtministerium – RLM) GL/C-E 4 вместе с расположенным в Вернойхене (Werneuchen) испытательным центром (руководитель штабной инженер Беренс [Stabsing. Behrens]) в течении 1944 года провели исследования, в ходе которых производились замеры аэродинамического сопротивления производившихся в то время радиолокационных антенн. Исследования проводились в аэродинамической трубе института аэродинамики Немецкого научно-исследовательского авиационного института (Deutschen Versuchsanstalt für Luftfahrt, E.V.), Берлин-Адлерсхоф (Berlin-Adlershof).

1 Отдельные антенны

Электрическая составляющая антенны связана с очень точными требованиями и не позволяет снижать эти требования в угоду аэродинамике. Однако в данной части имеются некоторые возможности, которые можно получить путем небольших уступок с стороны электрической составляющей антенны.

Основа антенны радиолокатора представляет собой комбинацию двух диполей, передний из которых является излучателем, а задний приёмником. Кроме того перед излучателем можно разместить один или несколько директоров. Расстояние от отражателя от излучателя составляет от 1/4 до 1/5 длины волны, направляющих диполей – от 1/10 до 1/8 длины волны. Отношение толщин диполей определяется требуемой шириной полосы частот и в данное время (1944 год) имеет значение 0,04-0,06.

Излучающая поверхность диполя имеет ширину, равную длине волны, при диполях, имеющих значение 1/2 длины волны и высоте, равной длине волны. Таким образом, площадь равна квадрату самой длины волны.

Использование одновременно многих подобных диполей подбирается площадь антенны, позволяющая получить необходимые дальность и зону обзора для обнаружения самолётов противника и четкость изображения.

Для передачи и приема могут быть использованы как отдельные антенны, так и антенны работающие совместно.

Аэродинамическое сопротивление таких антенных систем вызвано следующими факторами:

  • 1) величина площади проекции площади стержней антенн (включая и кронштейны) на плоскость перпендикулярную направлению полета;
  • 2) лобовое сопротивление используемых профилей;
  • 3) взаимное влияние расположенных друг за другом или рядом диполей или кронштейнов (схемы 1 и 2).

Согласно 1) возникает необходимость устанавливать на самолёты как можно меньшее количество антенн и поэтому по возможности для передачи и приема сигналов должна быть использована только одна антенна. При использовании нескольких небольших по площади антенн можно было располагать эти антенны одна за другой на единых крепёжных элементах. Это предложение поступило от лётчика-инженера Беренса и было разработано в исследовательском центре Luftwaffe в Вернойхене под названием «Zaunkönig» (Крапивник). За счет профилирования антенн и элементов их крепления аэродинамическое сопротивление удалось снизить на 25 % в сравнении с ранее использовавшимися антеннами (схемы 2). Поскольку требуемая толщина распределения отвечает за ширину полосы пропускания и допустимое отклонение концов антенн, то определенное значение размеров не может быть превышено. Иначе это вызвало бы изменение электрического взаимодействия двух расположенных рядом друг с другом антенных стержней. На изгиб элементов крепления под воздействием набегающего потока воздуха существенное влияние оказывает даже незначительные изменения толщины, поскольку момент сопротивления пропорционален третьей степени мощности, тогда как предельная допустимая нагрузка от ветра возрастает линейно в зависимости от диаметра антенны. Технологически стержни антенн изготавливаются путем намотки, складывания или состоят из двух половинок металлических труб.

Помимо формы профиля утончение необходимо и для уменьшения лобового сопротивления профилей стержней. Выравнивание давления на концах стержней в свою очередь приводит к сокращению индуцированного сопротивления давлению, которое изменяется в зависимости от длины стержня пропорционально общему сопротивлению. Обычно стержни антенн крепятся на общей опоре, которая в полете продувается вдоль своей оси. По существу общее сопротивление носителя во многом зависит от отрыва свободного потока от размеров поверхности трубы (Rohroberfläche).

Общее аэродинамическое сопротивление антенны, состоящей из нескольких последовательно расположенных антенн, состоит из суммарного аэродинамического сопротивления всей конструкции. Взаимное влияние расположенных рядом элементов конструкции при малом расстоянии между отдельными антеннами позволяет значительно снизить возникающее аэродинамическое сопротивление. При величине равной до 30 диаметров стержней антенн суммарное аэродинамическое сопротивление не является равным аэродинамическому сопротивлению одиночной антенны (схемы 1). Это снижение величины аэродинамического сопротивления связано с тем, что задний стержень находится под действием кильватерной турбулентности переднего стержня и, таким образом, имеет коэффициент лобового сопротивления в сверхкритическом состоянии. Вследствие этого представляется выгодным располагать стержни антенны на небольшом удалении друг от друга.

При применении данной конструкции для увеличения ширины полосы частот будет необходим толстый профиль, представляющий собой электрический эквивалент отдельных стержней. Таким образом, площадь поперечного сечения опоры оказывает влияние на продольную устойчивость самолёта и не увеличивает при этом аэродинамическое сопротивление (схема 3).

2 Закреплённые на фюзеляже антенны

При креплении антенны на фюзеляже антенна находится в поле воздушного потока обтекающего фюзеляж или крыло. Распределение скорости воздушного потока, обтекающего фюзеляж или крыло, в зависимости от места может значительно отличаться от скорости потока. Соответственно, на антенну оказывают воздействие нагрузки, вызванные воздушным потоком. Распределение воздушного потока и его скорость у носовой части фюзеляжа представлены на схеме 4. Заметны размеры зоны, где скорость воздушного потока ниже чем скорость самолёта. В непосредственной близости от носовой оконечности фюзеляжа скорость воздушного потока равна только 0,71 скорости полёта самолёта, но, тем не менее, и эта скорость значима для установленной в носовой части антенны радиолокатора. Для установки антенны на фюзеляже всегда рекомендуется расположить стержни антенны в зоне статического избыточного давления, поскольку в ней эффективное динамическое давление будет меньше. Помимо изменения значений абсолютной скорости в нисходящем потоке по-прежнему происходят изменения в направлении потока воздуха, что может привести к возникновению больших поперечных и прочих нагрузок, а так же флаттера. Не смотря на то, что индуцированное сопротивление растёт, величина общих тангенциальных нагрузок остаётся неизменной. В данном случае имеет смысл использовать стержни антенны выполненные в виде конуса. У таких штоков толстая часть стержней находится в зоне, где скорость воздушного потока ниже, чем у более тонких частей. Лучше всего, конечно, было бы крепить стержни антенн на линии продольной оси длинных стержней, расположенных звездообразно относительно продольной оси так, как это было сделано на антенне радиолокатора типа Lichtenstein SN 2/SN 3.

Из соображений обеспечения безопасности полёта было необходимо исследовать вероятность возникновения флаттера антенны радиолокатора, закреплённой на носовой части фюзеляжа. В ходе полётов было установлено, что стержни антенн, расположенные в виде круга, в полёте крепятся недостаточно надёжно. У диполей антенны при выполнении полёта были отмечены колебания, вызванные периодическими изменениями воздушного потока; причиной этому были воздушные винты самолёта. Аналогичный эффект может быть получен посредством передачи вибраций от работающих двигателей самолёта через его планер. Создаваемые воздушными винтами импульсы не были настолько велики для того чтобы создать силы достаточные для изгиба стержней.

Это имеет отношение только к профилю одиночных антенн, но должно учитываться в целом для всего того, что расположено на носовой части фюзеляжа и является решающим в отношении частоты возникновения сил на горизонтальных трубчатых стержнях антенны. Цель состоит в том, чтобы добиться максимально возможной разницы в кручении и изгибе частот крутильных и изгибных колебаний. Была достигнута определённая гарантия того, что значения нагрузок, вызванных в результате возникновения флаттера, будут находиться в приемлемом диапазоне и что линия нейтральных сил будет находиться за линией эластичных нагрузок. Некоторый запас от критической скорости флаттера достигается, если нейтральная линия расположена за упругой линии. Нейтральной линией в данном случае является геометрическое место точек давления, на которое оказывают результирующие нагрузки от потока воздуха. Широкая задняя кромка профиля позволяет сместить назад точку приложения сил и, не смотря на несколько увеличенное аэродинамичекое сопротивление, оно остаётся незначительным и более низким, чем при использовании закруглённой задней кромки.

3 Снижение летных характеристик самолёта

Увеличение аэродинамического сопротивления, возникающее вследствие установки антенны радиолокатора, в первую очередь снижает скорость и дальность полёта самолёта. Решающим является доля аэродинамического сопротивления антенны в общем аэродинамическом сопротивлении всего летательного аппарата. В зависимости от аэродинамических качеств самолёта снижение скорости полёта может быть значительным и доходить до 50 км/ч. Улучшение конструкции антенны и элементов её крепления на фюзеляже с точки зрения аэродинамики может снизить потери скорости и дальности полёта до приемлемых границ (тaблицы 2 + 3).

Мы так же считаем нужным упомянуть то, что при использовании самолёта в ночное время установленные на самолёте пламегасители часто приводят к значительному снижению скорости.

Использовавшиеся до 1944 года антенны радиолокаторов в среднем имели коэффициент аэродинамического сопротивления Cw равный 1,3 до 1,4. Особенно хороший показатель был у антенны радиолокатора «Zaunkönig» из-за малой площади. Потери скорости, которые имеют место из-за установки антенны радиолокатора, зависят в основном от аэродинамического сопротивления самого самолёта и равны примерно 2-3 %.


Схема 1 Радиолокаторы Hohentwiel, Zaunkönig, Lichtenstein, SN II, Neptun V Схема 2 и таблица 1 Данные по профилям Схема 3 Распределение давления потока воздуха перед носовой оконечностью самолёта Схема 4 Взаимное влияние двух стержней


Рис. 1 Радиолокатор Hohentwiel в аэродинамической трубе Рис. 2 Радиолокатор Hohentwiel, установленный на He 111


Рис. 3 Радиолокатор Hohentwiel, установленный на He 111


Рис. 4 Радиолокатор Hohentwiel, установленный на FW 200 Рис. 5 Радиолокатор Hohentwiel, установленный на Ju 88 Рис. 6 Радиолокатор Zaunkönig I в аэродинамической трубе


Рис. 7 Радиолокатор Zaunkönig, установленный на He 111 Рис. 8 Радиолокатор Lichtenstein B.C. в аэродинамической трубе


Рис. 9 Радиолокатор Lichtenstein B.C., установленный на Ju 88


Рис. 10 Радиолокатор Lichtenstein B.C., установленный на Ju 88 Рис. 11 Радиолокатор Lichtenstein B.C., установленный на Me 110 Рис. 12 Радиолокатор Lichtenstein в аэродинамической трубе Рис. 13 Радиолокатор Lichtenstein SN в аэродинамической трубе Рис. 14 Радиолокатор Lichtenstein SN 2, установленный на Me 110 (крупный план) Рис. 15 Радиолокатор Lichtenstein SN 2, установленный на Ju 88 (крупный план) Рис. 16 Радиолокатор Lichtenstein SN 2, установленный на Ju 88 (крупный план)


Рис. 17 Радиолокатор Neptun V в аэродинамической трубе


Рис. 18 Радиолокатор Neptun R (FuG 216) под крылом


Рис. 19 Радиолокатор Neptun R (FuG 214) на крыле


Рис. 20 Радиолокатор Morgenstern; вид сбоку


Рис. 21 Радиолокатор Morgenstern; вид спереди

Таблица 2 Аэродинамическое сопротивление различных поверхностей антенных систем

Таблица 3 Снижение скорости полёта самолётов различных типов с установленными на них антенными системами радиолокаторов

Активная фазированная антенная решётка [Active Electronically Scanned Array, AESA]

Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Во-вторых, у обычного радара возможность уменьшения паразитной интерференции ограничена ошибками нестабильности аппаратуры. Больше всего в эти ошибки вносят вклад аналого-цифровой преобразователь, преобразователь с понижением частоты, усилителей высокой мощности, усилители слабых сигналов и генератор волн. У АФАР с распределённой группой усилителей высокой мощности и усилителей слабых сигналов такие ошибки можно уменьшать. В результате у АФАР повышается чувствительность в шумных условиях.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

Эстафета переходит в Германию

В 1904 году немец Христиан Хюльсмейер запатентовал устройство под названием телемобилоскоп. Этот прибор предполагалось использовать в судоходстве для обнаружения кораблей в условиях плохой видимости. Телемобилескоп был построен на основе искрового генератора радиоволн и в своей последней версии мог находить суда на расстоянии до 3 км. Однако устройством не заинтересовались ни гражданские, ни военные, предпочитая по старинке пользоваться на судах паровыми ревунами. По сути прибор Хюльсмайера был еще не радаром, а радиодетектором. Существовавшие на тот момент технологии еще не позволяли построить полноценный радиолокатор.


Схема установки антенны радиолокатора «Зеетакт» на немецкой подводной лодке

В 1920-1930-е годы немецкие ученые и инженеры достигли больших успехов в развитии военной радиолокации. В 1935 году физик Рудольф Кунхольд из Института технологий связи германских ВМС представил радиолокационный прибор с электронно-лучевым дисплеем. К концу 1930-х на его основе были созданы оперативные радиолокаторы «Зеетакт» для флота и «Фрейя» для ПВО.

Однако, несмотря на значительные научные результаты, руководство Третьего рейха рассчитывало на блицкриг и не спешило развивать национальную сеть радаров, считая их преимущественно оборонительными средствами. К 1940 году Германия располагала лишь небольшой сетью станций дальнего обнаружения. И только к концу 1943 года территорию Германии полностью накрыли защитным радиолокационным «колпаком».

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]