Взрывчатые вещества (сокращенно ВВ) – это особые химические соединения, а также их смеси, которые способны взрываться под влияниями наружных условий или происходящих внутренних процессов, при этом образуются чрезвычайно нагретые газы и выделяется тепло. Различают три группы взрывчатых веществ, имеющих разную восприимчивость к внешним влияниям и разные типы взрыва. К ним относятся: инициирующие, метательные, а также бризантные вещества. В этой статье представлена информация о бризантных ВВ и сферах их применения.
Общие понятия
Взрыв – это стремительное преобразование взрывчатого вещества в значительное количество чрезвычайно сжатых и нагретых газов, которые, расширяясь, совершают следующую работу: перемещают, дробят, разрушают, выбрасывают.
Взрывчатое вещество подразумевает собой механическую смесь или соединения химических элементов, которые могут быстро преобразоваться в газы. Взрыв похож на горение угля или дров, но различается большой скоростью протекания этого процесса, которая часто составляет десятитысячные доли секунды. В зависимости от скорости превращения взрывы подразделяют так:
- Горение. Передача энергии от одного слоя вещества к другому совершается вследствие теплопроводности. С небольшой скоростью протекает процесс горения и возникновения газов. Такой взрыв свойственен пороху, при котором пуля выбрасывается, но гильза не разрушается.
- Детонация. Энергия от слоя к слою передается практически мгновенно. Газы образуются со сверхзвуковой скоростью, давление стремительно увеличивается, и происходят сильные разрушения. Такой взрыв присущ гексогену, аммониту, тротилу.
Для того чтобы начался процесс взрыва, требуется воздействие извне на взрывчатое вещество, которое бывает следующих типов:
- детонационное – взрыв рядом другого ВВ;
- тепловое – нагревание, искра, пламя;
- химическое – химическая реакция;
- механическое – трение, накол, удар.
Взрывчатого типа вещества неодинаково реагируют на воздействия извне:
- некоторые способны быстро взрываться;
- другие – чувствительны только к определенному воздействию;
- третьи могут взрываться даже без всякого влияния на них.
Основные свойства ВВ
Их главными свойствами являются:
- восприимчивость к наружным влияниям;
- бризантность;
- характерное агрегатное состояние;
- количество энергии, выделяемое при взрыве;
- химическая устойчивость;
- стремительность детонации;
- плотность;
- фугасность;
- длительность и обстоятельства работоспособного состояния.
Каждое взрывчатое вещество можно подробно описать, используя все его характеристики, но в большинстве случаев используют две из них:
- Бризантность (ломать, дробить, разбивать). Т. е. это способность взрывчатого вещества производить разрушающие действия. Чем выше бризантность, тем быстрее формируются при взрыве газы и с большей силой происходит взрыв. В результате хорошо раздробится корпус снаряда, осколки разлетятся с большой скоростью, произойдет сильная ударная волна.
- Фугасность – мера работоспособности ВВ, выполняющего разрушительные, метательные и другие действия. Основное влияние на нее оказывает объем газа, выделяемый при взрыве. Огромное количество газа способно осуществить большую работу, например, выбросить из района взрыва бетон, грунт, кирпич.
Бризантные взрывчатые вещества, обладающие повышенной фугасностью, подойдут для взрывных работ в шахтах, при ликвидации ледяных заторов, устройстве различных котлованов. При изготовлении снарядов сначала обращают внимание на бризантность, а фугасность отступает на второй план.
рПНРХК (РПХМХРПНРНКСНК, рмр, РНК) — ЙПХЯРЮККХВЕЯЙНЕ БЕЫЕЯРБН ФЕКРНЦН ЖБЕРЮ, ЙНРНПНЕ УНПНЬН ОПЕЯЯСЕРЯЪ Х ОКЮБХРЯЪ ОПХ РЕЛОЕПЮРСПЕ +81╟я. рПНРХК ОПЮЙРХВЕЯЙХ МЕ БГЮХЛНДЕИЯРБСЕР Я ЛЕРЮККЮЛХ, УХЛХВЕЯЙХ ЯРНЕЙ (ЛНФЕР УПЮМХРЭЯЪ ДЕЯЪРЙХ КЕР). вСБЯРБХРЕКЭМНЯРЭ Й СДЮПС ЯПЮБМХРЕКЭМН МЕБЕКХЙЮ (ОПХ ОПНЯРПЕКЕ ОСКЕИ МЕ БГПШБЮЕРЯЪ), ОНДНФФЕММШИ РПНРХК МЮ НРЙПШРНЛ БНГДСУЕ ЯЦНПЮЕР АЕГ БГПШБЮ. б ВХЯРНЛ БХДЕ РПНРХК ХЯОНКЭГСЕРЯЪ ДКЪ ЯМЮПЪФЕМХЪ ЮБХЮАНЛА Х АНЕБШУ ВЮЯРЕИ ПЮЙЕР. яМЮПЪФЕМХЕ АНЕОПХОЮЯНБ НАШВМН ОПНХГБНДХРЯЪ ОПЕДБЮПХРЕКЭМН ПЮЯОКЮБКЕММШЛ РПНРХКНЛ ОСРЕЛ ЕЦН ГЮКХБЙХ. рПНРХК ЬХПНЙН ОПХЛЕМЪЕРЯЪ Б ЙЮВЕЯРБЕ ОКЮБЙНИ ЙНЛОНМЕМРШ Б ЯОКЮБЮУ Я АНКЕЕ ЛНЫМШЛХ бб.
рЕРПХК — ЙПХЯРЮККХВЕЯЙНЕ БЕЫЕЯРБН АКЕДМН-ФЕКРНЦН ЖБЕРЮ, УПНЬН ОПЕЯЯСЕРЯЪ, ОКЮБХРЯЪ ЯН БГПШБНЛ, ВСБЯРБХРЕКЭМНЯРЭ Й СДЮПС Х БНЯОПХХЛВХБНЯРЭ Й ДЕРНМЮЖХХ ЦНПЮГДН БШЬЕ, ВЕЛ С РПНРХКЮ. рЕРПХК ОПХЛЕМЪЕРЯЪ ДКЪ ХГЦНРНБКЕМХЪ ДНОНКМХРЕКЭМШУ ДЕРНМЮРНПНБ Х Б ЯНЯРЮБЮУ ЙЮОЯЧКЕИ-ДЕРНМЮРНПНБ.
цЕЙЯНЦЕМ, НЙРНЦЕМ Х РЩМ — ЙПХЯРЮККХВЕЯЙХЕ БЕЫЕЯРБЮ АЕКНЦН ЖБЕРЮ, УНПНЬН ОПЕЯЯСЧРЯЪ, ОКЮБЪРЯЪ ЯН БГПШБНЛ. нРКХВЮЧРЯЪ НР РПНРХКЮ БШЯНЙНИ ВСБЯРБХРЕКЭМНЯРЭЧ Й СДЮПС Х АНКЭЬЕИ ЛНЫМНЯРЭЧ. цЕЙЯНЦЕМ, НЙРНЦЕМ Х РЩМ НРМНЯЪРЯЪ Й ВХЯКС МЮХАНКЕЕ ЛНЫМШУ бб, ОПХЛЕМЕМХЕ ЙНРНПШУ Б ВХЯРНЛ БХДЕ НЦПЮМХВЕМН ХГ-ГЮ БШЯНЙНИ ВСБЯРБХРЕКЭМНЯРХ Й СДЮПС Х МЕБНГЛНФМНЯРХ ОПНХГБНДХРЭ ЯМЮПЪФЕМХЕ ОПНЯРШЛХ ЯОНЯНАЮЛХ (ГЮКХБЙНИ).
лЕУЮМХВЕЯЙЮЪ ЯЛЕЯЭ ТКЕЦЛЮРХГХПНБЮММНЦН ЦЕЙЯНЦЕМЮ Я ЮКЧЛХМХЕБНИ ОСДПНИ НАКЮДЮЕР ЯХКЭМШЛ ТСЦЮЯМШЛ Х ГЮФХЦЮРЕКЭМШЛ ДЕИЯРБХЕЛ. оНБШЬЕММЮЪ ТСЦЮЯМНЯРЭ ДЕИЯРБХЪ ЯЛЕЯХ НАСЯКНБКЕМЮ ЮКЧЛХМХЕЛ, ЙНРНПШИ ОНЯКЕ ДЕРНМЮЖХХ БЯРСОЮЕР Б ПЕЮЙЖХХ Я ОПНДСЙРЮЛХ БГПШБЮ (ОЮПЮЛХ БНДШ, СЦКЕЙХЯКНРНИ Х НЙХЯЭЧ СЦКЕПНДЮ), ЯЦНПЮЪ ГЮ ЯВЕР ЯНДЕПФЮЫЕЦНЯЪ Б МХУ ЙХЯКНПНДЮ. щРХ ПЕЮЙЖХХ ЯНОПНБНФДЮЧРЯЪ БШДЕКЕМХЕЛ АНКЭЬНЦН ЙНКХВЕЯРБЮ РЕОКЮ (ОПХ ЯЦНПЮМХХ 1 ЙЦ ЮКЧЛХМХЪ БШДЕКЪЕРЯЪ Б ЯЕЛЭ Я КХЬМХЛ ПЮГ АНКЭЬЕ ЩМЕПЦХХ, ВЕЛ ОПХ БГПШБЕ 1 ЙЦ РПНРХКЮ).
бШДЕКЕММНЕ ХГАШРНВМНЕ РЕОКН ОПЕНАПЮГСЕРЯЪ Б ЛЕУЮМХВЕЯЙСЧ ПЮАНРС, ЯНБЕПЬЮЕЛСЧ ОПНДСЙРЮЛХ БГПШБЮ, Р. Е. Б ОЕПХНД ТСЦЮЯМНЦН ДЕИЯРБХЪ. оПХ ЯЦНПЮМХХ ЮКЧЛХМХЪ НАПЮГСЧРЯЪ ПЮЯЙЮКЕММШЕ РБЕПДШЕ ЬКЮЙХ НЙХЯКНБ ЮКЧЛХМХЪ, ЙНРНПШЕ НАЕЯОЕВХБЮЧР ГЮФХЦЮРЕКЭМНЕ ДЕИЯРБХЕ БГПШБЮ.
яОКЮБШ РПНРХКЮ Я ЦЕЙЯНЦЕМНЛ ХГЦНРНБКЪЧРЯЪ ББЕДЕМХЕЛ Б ПЮЯОКЮБКЕММШИ РПНРХК ОНПНЬЙННАПЮГМНЦН ЦЕЙЯНЦЕМЮ (РЕЛОЕПЮРСПЮ ОКЮБКЕМХЪ +203,5╟я), ЙНРНПШИ МЮУНДХРЯЪ Б МЕЛ Б БХДЕ БГБЕЯХ. яОКЮБШ ОН ЛНЫМНЯРХ ОПЕБНЯУНДЪР РПНРХК, ГМЮВХРЕКЭМН ЛЕМЕЕ ВСБЯРБХРЕКЭМШ, ВЕЛ ВХЯРШИ ЦЕЙЯНЦЕМ, Х НАКЮДЮЧР БШcНЙНИ БНЯОПХХЛВХБНЯРЭЧ Й ДЕРНМЮЖХХ.
дКЪ ОНБШЬЕМХЪ ТСЦЮЯМНЦН ДЕИЯРБХЪ БГПШБЮ Б ЯОКЮБШ ДНАЮБКЪЧР ОНПНЬЙННАПЮГМШИ ЮКЧЛХМХИ. мЕДНЯРЮРЙНЛ РЮЙХУ ЯОКЮБНБ ЪБКЪЕРЯЪ ОНБШЬЕММЮЪ ВСБЯРБХРЕКЭМНЯРЭ Й СДЮПС Х РПЕМХЧ. щРНР МЕДНЯРЮРНЙ СЯРПЮМЪЕРЯЪ ББЕДЕМХЕЛ Б ЯОКЮБ ТКЕЦЛЮРХГЮРНПНБ, ЙНРНПШЕ ЯМХФЮЧР ВСБЯРБХРЕКЭМНЯРЭ ЕЦН ДН СПНБМЪ ВСБЯРБХРЕКЭМНЯРХ РПНРХКЮ, МЕ НЙЮГШБЮЪ ОПХ ЩРНЛ ЯСЫЕЯРБЕММНЦН БКХЪМХЪ МЮ ЛНЫМНЯРЭ ЯОКЮБЮ.
Классификация
Взрывчатые вещества имеют несколько классификаций. На основе своих свойств они подразделяются следующим образом:
- Инициирующие – находят применение для подрыва других ВВ. Они имеют высокую чувствительность к факторам инициации и обладают большей скорости детонации. А также их еще называют первичные ВВ, которые способны взорваться от слабого механического воздействия. В группу входит: диазодинитрофенол, гремучая ртуть.
- Бризантные взрывчатые вещества – характерны большой бризантностью и применяются как основной заряд для большей части боеприпасов. Это вторичные взрывчатые вещества, имеющие меньшую чувствительность к внешним воздействиям по отношению к первичным ВВ. В своем химическом составе они содержат нитраты и их соединения, обладают мощным взрывным действием. Для их взрыва используют небольшое количество инициирующих веществ.
- Метательные – служат источником энергии для метания пуль, снарядов, гранат. К ним относятся разного вида ракетные топлива и порох.
- Пиротехнические составы – используют для специальных боеприпасов. Сгорая, они дают характерный эффект – сигнальный, осветительный.
Кроме этого, по физическому состоянию они бывают:
- твердые;
- жидкие;
- газообразные;
- эмульсионные;
- суспензии;
- пластичные;
- гелеобразные;
- эластичные.
Общая характеристика
Вскрытие входной двери с помощью компактного подрывного заряда (2008 год)
Любое взрывчатое вещество обладает следующими характеристиками:
- способность к экзотермическим химическим превращениям
- способность к самораспространяющемуся химическому превращению
Важнейшими характеристиками взрывчатых веществ являются:
- скорость взрывчатого превращения (скорость детонации или скорость горения),
- давление детонации,
- теплота (удельная теплота) взрыва,
- состав и объём газовых продуктов взрывчатого превращения,
- максимальная температура продуктов взрыва (температура взрыва),
- чувствительность к внешним воздействиям,
- критический диаметр детонации,
- критическая плотность детонации.
При детонации разложение взрывчатых веществ происходит настолько быстро (за время от 10−6 до 10−2сек), что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.
Различают два основных вида действия взрывчатых веществ: бризантное (местного действия) и фугасное (общего действия).
Существенное значение при хранении взрывчатых веществ и обращении с ними имеет их стабильность.
В прикладных сферах широко используется не более двух-трёх десятков взрывчатых веществ и их смесей. Основные характеристики наиболее распространённых из них сведены в следующую таблицу (данные приведены при плотности заряда 1600 кг/м3):
Взрывчатое вещество | Кислородный баланс,% | Теплота взрыва, МДж/кг | Объём продуктов взрыва, м3/кг | Скорость детонации, км/с |
Тротил | -74,0 | 4,2 | 0,75 | 7,0 |
Тетрил | -47,4 | 4,6 | 0,74 | 7,6 |
Гексоген | -21,6 | 5,4 | 0,89 | 8,1 |
Тэн | -10,1 | 5,9 | 0,79 | 7,8 |
Нитроглицерин | +3,5 | 6,3 | 0,69 | 7,7 |
Аммонит № 6 | 4,2 | 0,89 | 5,0 | |
Нитрат аммония | +20,0 | 1,6 | 0,98 | ≈1,5 |
Азид свинца | неприменимо | 1,7 | 0,23 | 5,3 |
Баллиститный порох | -45 | 3,56 | 0,97 | 7,0 |
Бризантные ВВ
Свое название бризантные вещества получили от французского слова briser, что в переводе на русский означает разламывать, дробить. Такие ВВ могут представлять собой как отдельные химические соединения – тэн, тротил, нитроглицерин, так и смеси – динамиты, динамоны, аммониты. У них не происходит детонации от простых импульсов: луча пламени или искры, которых достаточно для взрыва инициирующих веществ. Низкая восприимчивость бризантных ВВ к воздействию тепла, трения и удара обеспечивает безопасность при работе с ними. Их применяют для изготовления осколочных и авиационных бомб, морских и инженерных мин, где необходим мощный взрыв с дроблением оболочки снаряда.
Взрывчатый краситель
В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.
Трехмерная модель молекулы тринитрофенола.
Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.
В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.
Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.
Это интересно:
позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.
Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.
В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота»
.
Бризантные вещества повышенной мощности
Взрывчатые вещества, имеющие повышенную мощность, располагают большой скоростью детонации и при взрыве выделяют значительное количество тепла. Они очень чувствительны ко внешнему импульсу.
Взрыв происходит от любого детонатора, в том числе и от удара винтовочной пули. При воздействии открытого огня они сильно горят, не выделяя сажи и дыма, светлым пламенем, возможен взрыв. К этой группе веществ принадлежит:
- Тэн – белый порошок, состоящий из кристаллов. Это бризантное вещество не реагирует с металлами и водой, разводится в ацетоне и считается самым уязвимым к внешним факторам воздействия. Его используют для шнуров детонации, вспомогательных детонаторов и капсюлей детонаторов.
- Тетрил – порошок кристаллического типа желтоватого цвета, соленый на вкус. Хорошо разводится ацетоном и бензином, плохо – спиртом, с металлами не реагирует, хорошо поддается прессовке. Используют для изготовления детонаторов.
- Гексоген – одно из самых бризантных веществ, которое состоит из мелких кристаллов белого цвета, не имеющих запаха и вкуса. С водой и металлами в реакцию не вступает, плохо прессуется. От внешнего воздействия происходит взрыв, горит с шипением, пламя яркого белого цвета. Применяют для некоторых образцов капсюлей-детонаторов, изготовления смесей для промышленных взрывов, морских мин.
Бризантные ВВ, обладающие нормальной мощностью
Эти вещества имеют длительный период хранения (за исключением динамитов), на них не оказывают ощутимого влияния внешние факторы, при практическом использовании они безопасны.
К бризантным взрывчатым веществам относится:
- Тротил – это вещество в виде кристаллов, имеющее желтоватый или коричневатый цвет, горькое на вкус. Температура плавления – 81 °С, а вспышки — 310 °С. На открытом воздухе горение тротила сопровождается пламенем желтоватого цвета с сильной копотью без взрыва, а в закрытом помещении может произойти детонация. Вещество с металлами химической активности не проявляет, практически не чувствительно к ударам, трению и тепловому воздействию. Вступает во взаимосвязь с соляной и серной кислотой, бензином, спиртом, а также ацетоном. Например, при простреле литой и прессованный ружейной пулей тротил не загорается, и взрыва не происходит. Для боеприпасов его применяют в различных сплавах и чистом виде. Вещество используют в виде прессованных шашек различных размеров при выполнении подрывных работ.
- Пикриновая кислота – бризантное вещество в виде кристаллов, имеющих желтый цвет и горький вкус. Она обладает большей восприимчивостью к воздействию тепла, удара и трения, чем тротил, может взорваться от прострела ружейной пули. Пламя при горении сильно коптит. При большом скоплении вещества происходит детонация. По сравнению с тротилом, пикриновая кислота является более мощным ВВ.
- Динамиты – имеют разную рецептуру и содержат нитроглицерин, нитроэфиры, селитру, древесную муку и стабилизаторы. Основное применение – народное хозяйство. Главное свойство динамитов – водоустойчивость и значительная мощность. Их недостатком считается увеличенная восприимчивость к термическим и механическим влияниям. Это требует проявления осторожности при транспортировке и проведении взрывных работ. Через полгода динамиты утрачивают способность к детонации. Кроме того, они замерзают при отрицательной температуре около 20 °С и становятся опасными при эксплуатации.
1.5. Краткие сведения об основных взрывчатых веществах
В зависимости от чувствительности к внешним воздействиям и способности к переходу от горения к детонации взрывчатые вещества разделяются на три основные группы ВВ.
Инициирующие, или первичные ВВ используются для возбуждения детонации или горения взрывчатых веществ других групп. Горение и детонация инициирующих ВВ происходит при незначительной затрате внешней энергии в результате теплового или механического воздействия (нагревание, удар, трение).
Бризантные, или вторичные ВВ используются для изготовления разрывных снарядов боеприпасов и для взрывных работ. Горение их переходит в детонацию только при определенных условиях (например, при горении большой массы вещества с большим числом пор или при горении в замкнутом прочном сосуде). При применении бризантных ВВ детонацию их вызывают с помощью взрыва вспомогательного заряда инициирующего (первичного) ВВ или с помощью взрыва заряда другого бризантного ВВ.
Пороха, или метательные ВВ используются в качестве метательных зарядов для огнестрельного оружия и в качестве топлива для реактивных двигателей. По составу они близки к бризантным ВВ, но горение их более устойчиво. Горение порохов не переходит в детонацию даже при давлении в несколько тысяч атмосфер.
При определенных условиях (например, при воздействии на них достаточно мощного начального импульса или если диаметр их больше критического) пороха могут детонировать. Некоторые из порохов имеют большой критический диаметр, и, кроме того, детонация порохов возможна только при взрыве мощного детонатора, — по этим причинам возникло мнение, что пороха не могут детонировать.
Инициирующие взрывчатые вещества
Гремучая ртуть [Hg(CNO)2] – соль гремучей кислотыHCNO, фульминат ртути — белый или серый кристаллический порошок с плотностью 4,4 г/ см3. Температура вспышки 175 – 1800С. Легко взрывается от незначительного удара и трения. Разложение гремучей ртути происходит в соответствии с уравнением
[Hg(CNO)2]Hg+ 2CO+N2+ 494 кДж.
Может гореть, но горение легко и быстро переходит в детонацию. Известны случаи детонации в результате падения коробки с сухой гремучей ртутью, в результате падения какого-либо предмета на рассыпанную гремучую ртуть и т.д. Чувствительность к механическим и тепловым воздействиям гремучей ртути уменьшается в присутствии воды (при содержании 30 % воды она даже не загорается, но может быть взорвана капсюлем – детонатором). Гремучая ртуть в присутствии влаги энергично взаимодействует с алюминием, поэтому ее нельзя хранить в алюминиевой посуде, и капсюли-детонаторы из гремучей ртути не изготавливаются из алюминия. Фульминаты алюминия являются очень чувствительными соединениями. Аналогична реакция образования фульмината меди, соединения, чувствительного к сотрясениям. Капсюли из меди предохраняются от влаги лакировкой изнутри и снаружи.
Соли гремучей кислоты – фульминаты – чрезвычайно опасны, т.к. взрываются во влажном состоянии и даже под водой ( особенно фульминаты ртути, золота и серебра). При высыхании брызг воды, содержащей гремучую ртуть, твердый остаток взрывает уже от действия солнечных лучей. Пыль, а также все промывные воды и водные отбросы производства фульминатов, склонны к самопроизвольному взрыву и перед удалением должны быть обезврежены нагреванием до 90 – 950С, что тоже небезопасно. Фульминаты применяют в пиротехнике в качестве запалов для других ВВ, для золочения (гремучее золото), для изготовления пистонов, запалов. Все эти препараты взрывают от толчка, падения, трения, сотрясения, нагревания, пламени, кислот и солнечных лучей. Гремучая ртуть применяется для снаряжения капсюлей – воспламенителей и капсюлей – детонаторов. Вследствие большой чувствительности сухой гремучей ртути к механическим воздействиям ее можно перевозить только в снаряженных изделиях. Длительное хранение гремучей ртути перед снаряжением допускается только под водой.
Азид свинца [Pb(N3)2] – соль азотистоводородной кислотыHN3, белый порошок с плотностью 4,8 г/ см3 и температурой вспышки 330-3400С. Обладает высокой чувствительностью. Известны случаи, когда азид свинца взрывался в результате нажима ногтем на его кристаллы. Для уменьшения чувствительности его флегматизируют парафином. При увлажнении азид свинца не теряет своей чувствительности. При поджигании внешним источником теплоты мгновенно детонирует. Взаимодействует с медью, не взаимодействует с алюминием. Азид свинца применяют для снаряжения капсюлей – детонаторов. Азотистоводородная кислота HN3 в безводном виде способна взрываться даже просто от сотрясения сосуда. В разбавленном водном растворе при хранении она практически не разлагается. Пары ее очень ядовиты, растворы вызывают воспаление кожи.
Взрывной распад азотистоводородной кислоты идет по уравнению: HN3Н2+ 3N2+ 590 кДж
Тринитрорезорцинат свинца (ТНРС) [C6H(NO2)3(O2Pb)H2O] – желто-коричневый порошок плотностью 3,1 г/см3 и температурой вспышки 2750С. Чувствительность к удару ниже, чем у азида свинца, а чувствительность к воспламенению выше. Применяется для снаряжения капсюлей-воспламенителей.
Тетразен илигуанилнитрозоаминогуанилтетразен [C2H8ON10] NH2 NH–NH-NO NH=C–NH–N=N–C=NH
Мелкокристаллический порошок желтоватого цвета плотностью 1,65 г/см3 и температурой вспышки около 1400С. Мало гигроскопичен. По чувствительности близок к гремучей ртути. Не взаимодействует с металлами.
Пониженная мощность ВВ
Бризантные вещества пониженной мощности имеют уменьшенную работоспособность из-за малой скорости детонации и небольшого выделения тепла. Они уступают по свойствам бризантности тем веществам, у которых нормальная мощность, но имеют такую же фугасность. Наиболее часто используемые ВВ из этой группы изготовляются на основе аммиачной селитры. К ним относится:
- Аммиачная селитра – белое или желтоватое кристаллическое вещество, являющееся минеральным удобрением, прекрасно растворяется в воде. Она относится к малочувствительным, слабо взрывчатым веществам. Не загорается от огня и искры, процесс горения начинается только в сильном очаге пламени. Небольшая стоимость аммиачной селитры позволяет изготовлять из нее недорогие ВВ при добавлении в нее взрывчатых или горючих веществ.
- Динамоны – это смесь аммиачной селитры с горючими, но невзрывчатыми веществами, например, углем древесным, торфом или опилками.
- Аммоналы – смеси для взрывов, содержащие селитру, с добавлением горючих и взрывчатых добавок и алюминиевой пудры для повышения теплоты взрыва.
Все виды бризантных взрывчатых веществ, изготовленных на основе аммиачной селитры, безопасны в использовании. Они не взлетают на воздух при трении, ударе, простреле пулей из винтовки. Зажженные на воздухе, горят тихо, не взрываясь, пламенем желтого цвета с копотью. Для хранения их складируют в хорошо проветриваемые помещения. Иногда в селитру добавляют жирные кислоты и сернистое железо, что способствует длительному пребыванию ВВ в воде без потери свойств.
Самые мощные взрывчатые неядерные вещества: гексоген, ТЭН и «китайский разрушитель»
Ядерный век не отнял у химических взрывчатых веществ пальмы первенства по частоте использования, широте применения — от армии до добычи нефти, а также удобству хранения и транспортировке. Их можно перевозить в пластиковых пакетах, прятать в обычные компьютеры и даже закапывать просто в землю без какой-либо упаковки с гарантией того, что детонация все-таки произойдет. К сожалению, до сих пор большинство армий на Земле использует взрывчатые вещества против человека, а террористические организации — для нанесения ударов против государства. Тем не менее, источником и заказчиком химических разработок остаются министерства обороны.
Гексоген
Гексоген — это бризантное взрывчатое вещество на основе нитрамина. Его нормальное агрегатное состояние — мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен и неагрессивен. Гексоген не вступает в химическую реакцию с металлами и плохо прессуется. Для взрыва гексогена достаточно одного сильного удара или прострела пулей, в таком случае он начинает гореть белым ярким пламенем с характерным шипением. Горение переходит в детонацию. Второе название гексогена — RDX, Research Department eXplosive — взрывчатка отдела исследований.
Бризантные взрывчатые вещества — это такие вещества, у которых скорость взрывчатого разложения достаточно велика и достигает нескольких тысяч метров в секунду (до 9 тыс. м/с), вследствие чего они обладают дробяще-раскалывающей способностью. Преимущественным видом взрывчатых превращений их является детонация. Они широко применяются для снаряжения снарядов, мин, торпед и различных подрывных средств.
Гексоген получают путем нитролиза гексамина азотной кислотой. В ходе получения гексогена методом Бахмана гексамин реагирует с азотной кислотой, нитратом аммония, ледяной уксусной кислотой и уксусным ангидридом. Сырье состоит из гексамина и 98-99-процентной азотной кислоты. Однако эта сложная экзотермическая реакция не полностью контролируема, поэтому конечный результат не всегда предсказуем.
Производство гексогена достигло пика в 1960-х годах, когда оно было третьим по объему производства взрывчатых веществ в США. Средний объем производства гексогена с 1969 по 1971 год составлял около 7 т в месяц.
Текущее производство гексогена в США ограничено военным использованием на Военном заводе по производству боеприпасов Holston в Кингспорте, штат Теннесси. В 2006 году на заводе армейских боеприпасов в Холстоне было произведено свыше 3 т гексогена.
Молекула гексогена
RDX имеет как военное, так и гражданское применение. В качестве военного взрывчатого вещества гексоген может использоваться отдельно в качестве основного заряда для детонаторов или в смеси с другим взрывчатым веществом, таким как тротил, с образованием циклотолов, которые создают взрывной заряд для воздушных бомб, мин и торпед. Гексоген в полтора раза мощнее тротила, и его легко активировать с помощью фульмината ртути. Обычное военное применение гексогена — в качестве ингредиента взрывчатых веществ на пластидовой связке, которые использовались для наполнения почти всех типов боеприпасов.
В прошлом побочные продукты военных взрывчатых веществ, таких как гексоген, открыто сжигались на многих армейских заводах по производству боеприпасов. Существуют письменные подтверждения того, что до 80% отходов боеприпасов и ракетного топлива за последние 50 лет были утилизированы именно так. Основным недостатком этого способа считается то, что взрывчатые загрязнители часто попадают в воздух, воду и почву. Боеприпасы с RDX также ранее утилизировались путем сброса в глубинные морские воды.
Октоген
Октоген — тоже бризантное взрывчатое вещество, но оно уже относится к группе взрывчатых веществ повышенной мощности. По американской номенклатуре обозначается как HMX. Существует много догадок относительно того, что означает аббревиатура: High Melting eXplosive — взрывчатка высокого плавления, или High-Speed Military eXplosive — высокоскоростное военное взрывчатое вещество. Но подтверждающих эти догадки записей нет. Это могло быть просто кодовое слово.
Первоначально, в 1941 году, октоген был просто побочным продуктом при производстве гексогена методом Бахмана. Содержание октогена в таком гексогене достигает 10%. Незначительные количества октогена присутствуют также и в гексогене, полученном окислительным способом.
В 1961 году канадский химик Жан-Поль Пикард запатентовал метод получения октогена непосредственно из гексаметилентетрамина. Новый метод позволял получать взрывчатое вещество с концентрацией 85% с чистотой более 90%. Недостаток метода Пикарда состоит в том, что это многоступенчатый процесс — он занимает достаточно продолжительное время.
В 1964 году индийские химики разработали одностадийный процесс, тем самым значительно снизив стоимость октогена.
Октоген, в свою очередь, более стабилен, чем гексоген. Он воспламеняется при более высокой температуре — 335 °C вместо 260 °С — и обладает химической стабильностью тротила или пикриновой кислоты, к тому же, у него более высокая скорость детонации.
HMX используется там, где его высокая мощность превышает расходы на его приобретение — около $100 за килограмм. Например, в ракетных боеголовках меньший заряд более мощного взрывчатого вещества позволяет ракете двигаться быстрее или иметь большую дальность полета. Он также используется в кумулятивных зарядах для пробивания брони и преодоления заграждений из оборонительных сооружений, где менее мощное взрывчатое вещество может не справиться. Октоген в качестве бризантных зарядов наиболее широко применяется при проведении взрывных работ в особо глубоких нефтяных скважинах, где имеются высокие температуры и давление.
Октоген используют в качестве взрывчатого вещества при бурении особо глубоких нефтяных скважин
В России октоген применяют для проведения прострелочно-взрывных работ в глубинных скважинах. Его используют при изготовлении термостойкого пороха и в термостойких электродетонаторах ТЭД-200. Октоген используют также для снаряжения детонирующего шнура ДШТ-200.
Транспортируют октоген в водонепроницаемых мешках (резиновых, прорезиненных или пластиковых) в форме пастообразной смеси или в брикетах, содержащих не менее 10% жидкости, состоящей из 40% (весовых) изопропилового спирта и 60% воды.
Смесь октогена с тротилом (30 на 70% или 25 на 75%) называется октол. Другая смесь, называемая окфол, представляющая собой однородный рассыпчатый порошок от розового до малинового цвета, на 95% состоит из октогена, десенсибилизированного на 5% пластификатором, это влияет на то, что скорость детонации падает до 8 670 м/с.
Твердые десенсибилизированные взрывчатые вещества смочены водой или спиртами либо разбавлены другими веществами для подавления их взрывчатых свойств.
Жидкие десенсибилизированные взрывчатые вещества растворены или суспендированы в воде или других жидких веществах для образования однородной жидкой смеси с целью подавления их взрывчатых свойств.
Гидразин и астролит
Гидразин и его производные чрезвычайно токсичны по отношению к различным видам животных и растительных организмов. Получить гидразин можно в результате реакции раствора аммиака с гипохлоритом натрия. Раствор гипохлорита натрия больше известен как белизна. Разбавленные растворы сульфата гидразина губительно действуют на семена, морские водоросли, одноклеточные и простейшие организмы. У млекопитающих гидразин вызывает судороги. В животный организм гидразин и его производные могут проникать любыми путями: при вдыхании паров продукта, через кожу и пищеварительный тракт. Для человека степень токсичности гидразина не определена. Особо опасно то, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния это ощущение исчезает и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.
Изобретенный в 1960-х годах химиком Джеральдом Херстом в астролит представляет собой семейство бинарных взрывчатых веществ в жидком состоянии, которые образуются при смешивании нитрата аммония и безводного гидразина (ракетного топлива). Прозрачная жидкая взрывчатка под названием Астролит G имеет очень высокую скорость детонации — 8 600 м/с, почти вдвое больше, чем у тротила. Кроме того, он остается взрывоопасным при практически любых погодных условиях, так как хорошо абсорбируется в земле. Полевые испытания показали, что Астролит G детонировал даже после того, как четверо суток находился в почве под проливным дождем.
Тетранитропентаэритрит
Тетранитрат пентаэритрита (PETN, ТЭН) — это нитратный эфир пентаэритрита, используемый в качестве энергетического и наполняющего материала для военных и гражданских целей. Вещество производится в виде белого порошка и часто является компонентом пластичных взрывчатых веществ. Он широко используется повстанческими отрядами и, вероятно, был выбран ими, потому что его очень легко активировать.
Внешний вид ТЭНа
ТЭН сохраняет свои свойства при хранении дольше, чем нитроглицерин и нитроцеллюлоза. В то же время он легко взрывается при механическом ударе определенной силы. Был впервые синтезирован в качестве коммерческого взрывного устройства после Первой мировой войны. Он был оценен как у военных, так и у гражданских специалистов, прежде всего, за его разрушительную силу и эффективность. Его закладывают в детонаторы, взрывные колпачки и взрыватели для распространения серии детонаций от одного заряда взрывчатого вещества к другому. Смесь примерно равных долей ТЭНа и тринитротолуола (ТНТ) создает мощную военную взрывчатку, называемую пентолитом, которая используется в гранатах, артиллерийских снарядах и боеголовках с кумулятивным зарядом. Первые заряды пентолита были выпущены из старого противотанкового оружия типа базуки во время Второй мировой войны.
Взрыв пентолита в Боготе
17 января 2022 года в столице Колумбии, Боготе, внедорожник, начиненный 80 кг пентолита, врезался в один из корпусов кадетской школы полиции «Генерал Сантандер» и взорвался. От взрыва погиб 21 человек, пострадавших, по официальным данным, было 87. Произошедшее было квалифицировано как террористический акт, так как машиной управлял бывший подрывник повстанческой армии Колумбии, 56-летний Хосе Альдемар Рохас. Власти Колумбии возложили ответственность за взрыв в Боготе на леворадикальную организацию, с которой они безуспешно ведут переговоры последние десять лет.
Взрыв пентолита в Боготе
ТЭН часто используют в террористических актах из-за его взрывной силы, возможности помещать в необычные упаковки и сложности обнаружения с помощью рентгеновского и другого обычного оборудования. Электрически активированный детонатор ударного типа можно обнаружить при обычном досмотре в аэропорту, если его перевозить на телах смертников, но он может быть эффективно скрыт в электронном приборе в виде пакетной бомбы, как это произошло при попытке взрыва грузового самолета в 2010 году. Тогда компьютерные принтеры с картриджами, наполненными ТЭН, были перехвачены органами безопасности только потому, что спецслужбы благодаря информаторам уже знали о бомбах.
Пластичные взрывчатые вещества — смеси, которые легко деформируются даже от незначительных усилий и сохраняют приданную им форму неограниченное время в условиях эксплуатационных температур.
Они активно применяются в подрывном деле для изготовления зарядов любой заданной формы непосредственно на месте проведения взрывных работ. Пластификаторами выступают каучуки, минеральные и растительные масла, смолы. Взрывчатыми компонентами служат гексоген, октоген, тетранитрат пентаэритрита. Пластификация взрывчатого вещества может быть произведена путем введения в его состав смесей нитратов целлюлозы и веществ, пластифицирующих нитраты целлюлозы.
Трициклическая мочевина
В 80-х годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу мочевины — один ее килограмм заменял 22 кг тротила.
Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ и при этом обладает максимальным кислородным коэффициентом. То есть во время взрыва сжигается абсолютно весь материал. Кстати, у тротила он равен 0,74.
В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.
Идеальное взрывчатое вещество — это баланс между максимальной взрывчатой силой и максимальной стабильностью при хранении и транспортировке. Да еще и максимальная плотность химической энергии, невысокая стоимость в производстве и, желательно, экологическая безопасность. Добиться всего этого нелегко, поэтому для разработок в этой области обычно берут уже зарекомендовавшие себя формулы и пытаются улучшить одну из нужных характеристик без ущерба для остальных. Полностью новые соединения появляются крайне редко.
Использование бризантных ВВ
Бризантные взрывные вещества – это вторичные ВВ, для которых детонация является основной видом взрывчатого превращения, возбуждаемая благодаря небольшому заряду первоначального ВВ. Они наделены способностью дробить и раскалывать. Их используют для начинки мин, разных средств для подрыва, торпед и снарядов. Вещества, обладающие взрывчатыми свойствами, представляют собой концентрированный и экономичный источник механической энергии. Они находят широкое применение в народном хозяйстве. Большая часть цветной руды, а также почти весь объем черных металлов, добывается при помощи взрывов.
Бризантные ВВ нашли свое применение в следующих областях:
- для разработки пластов угля и залежей полезных ресурсов;
- насыпей для железнодорожных путей и автодорог;
- постройки плотин;
- рытья водных каналов;
- прокладки газо- и нефтепроводов;
- разработки шахтных стволов.
Где используют бризантные вещества еще? Кроме вышеперечисленного, их применяют:
- при уплотнении грунта;
- проведении систем орошения;
- тушении пожаров лесных массивов;
- выравнивании и очистке местности.
А также ведутся научные исследования и разработки по расширению использования этой мощной энергии взрыва – ускорению химических процессов с применением высоких давлений, искусственному дождеванию и взрывному бурению.
Химия и технология бризантных взрывчатых веществ
Молекулы химических соединений или их смесей, содержащие некий запас химической энергии, получили название энергонасыщенных веществ. Энергия, в результате преобразования, происходящего под влиянием внешних факторов, превращается в световую, механическую или тепловую.
Пиротехнические составы, порох и другие ВВ относятся к самым известным типам энергонасыщенных веществ. Химическая энергия в них преобразуется за счет быстрого протекания взрыва в другие виды. Значительное количество тепла, выбрасываемое благодаря взрыву, является основным критерием его работоспособности. Являясь компактными и мощными источниками механической энергии, бризантные ВВ повсеместно используются в разных отраслях промышленности.