Наиболее интересной темой для человечества уже давно стал космос. Но в мире существуют не менее удивительные технические достижения, которые в какой-то степени являются звездолётами из научной фантастики — но для других стихий.
Взять, например, атомные подводные лодки: эти плавучие реакторы достигают океанского дна, плавают быстрее надводных кораблей и способны месяцами оставаться на глубине.
У них свой космос. Как получилось этого достичь, и где здесь связь с колонизацией других планет?
Принципиальное устройство подводной лодки
Любой подводный аппарат действительно очень похож на звездолёт: плотная среда, склонная к турбулентности при малейшем возмущении, заставляет разработчиков применять сложные формы для оптимизации движения.
Классическая подводная лодка с дизельным или дизель-электрическим агрегатом заимствует многое от надводных кораблей современного типа: есть палуба и остеклённая рубка и даже ватерлиния, разделяющая корпус на 2 части: надводную и подводную.
Такая лодка большую часть времени — при долгих морских переходах, «на марше», — находится в надводном положении; под водой проходит только скрытное выполнение задачи.
Рубка когда-то использовалась по назначению
Кроме внешнего («легкого») корпуса для формирования обводов, подводная лодка имеет внутренний («прочный») корпус, который и выдерживает возрастающее с глубиной забортное давление воды.
Для движения дизельных лодок под водой придумали шноркель — трубу, которая позволяет двигателю забирать воздух, необходимый для его работы, над поверхностью воды.
Палуба сохранилась и на современных атомных подводных лодках
Она позволяет увеличить продолжительность подводного хода, но для его реализации требуется достаточно низкая скорость, отсутствие волнения и небольшая глубина погружения.
Для больших глубин используются аккумуляторы, заряжающиеся от дизельного движителя во время его работы.
Системы безопасности и жизнеобеспечения
В современных подводных кораблях установлена воздушно-пенная, химическая и водяная системы пожаротушения. Вспомогательную роль при возникновении нештатных ситуаций играют огнетушители и специальный инвентарь (топоры, багры, ящики с песком и др.).
Воздух, необходимый для дыхания, вырабатывается электролитическими установками, которые пропускают электрический ток через морскую воду (в результате химической реакции образуется кислород и водород). Для опреснения воды, необходимой для питья и хозяйственных нужд, применяют автоматические установки с цифровыми контроллерами.
Водоотливная система состоит из центробежных и поршневых помп, а также трубопроводов и арматуры. Скорость откачивания воды составляет более 60 куб. м/ч на рабочей глубине и более 250 куб. м/ч на поверхности.
Проблемы и ограничения эксплуатации дизельных субмарин
Внешний вид и разрез современной дизель-электрической ПЛ проекта 677 «Лада»
Такая конструкция ограничивает возможности дизельных лодок: снижает скорость, время автономной работы. Кроме того, корпус дизельных лодок не позволяет достигать скоростей свыше 50 км/ч.
Аналогично, принципиальная конструкция ограничивает рост габаритов лодки и её грузоподъемность, защиту. А косвенно — и глубину погружения.
Сегодня дизельные субмарины работают только в прибрежной зоне с малым удалением от берега, хотя ещё во времена Второй Мировой войны он бороздили океаны.
Атомный реактор принципиально изменил эксплуатацию подводных судов из-за огромной мощности и буквально неограниченного запаса энергоносителя, что привело к гонке подводного вооружения и появлению двух школ кораблестроения.
Первая дизельная подлодка России
После русско-японской войны государство сообщило о решении развивать ветку подводных суден и на разработку отправили два проекта. Первый: «Акула», а второй дизельный – «Минога».
Построение одной из первых дизельных субмарин мира было доверено И. Г. Бубнову, который являлся главным конструктором «Дельфина». Имя субмарине дали – «Минога», разрабатывалась она в 1905 году, а с 1906 по 1909 года осуществлялось её строительство. Несмотря на то, что корабль испытывали в 1908 году и в то же время спустили на воду, подлодку отправили на доработку, связано это с требованием увеличить балласт.
Минога 1906
Трагичное затопление «Миноги»
23 марта 1913 года, субмарина совершала пробное погружение в воду, при проведении испытаний возникла внештатная ситуация, через клапан вентиляции начался набор воды. Сразу после спасательной операции было обнаружено, что все матросы и командирский состав уцелели, но у многих были отравления от хлора. После чего корабль далее применялся в боевых действиях.
«Минога» была лодкой участницей в Первой мировой войне. Больших успехов она не достигла, несмотря на некоторые попытки атаковать судна врага. А в 1915 году и вовсе могла потонуть от тарана, но из-за выдающихся действий старшины Г. М. Трусова она уцелела, и после ремонта в 1918 году ещё прослужила в гражданской войне в Каспийском море.
Дизельные подводные лодки России обладали преимущественно двигателем, работающим не только на дизеле, но и на электричестве, что помогало передвигаться под водой почти бесшумно.
Американская и советская школа кораблестроения
Первая атомная подводная лодка Советского Союза «Ленинский Комсомол»
Появление реактора на борту подводной лодки поставило перед разработчиками 3 задачи: увязать возможности реактора с возможностями лодки, обезопасить экипаж и придумать новые способы применения.
Уже первая атомная подводная лодка СССР К-3 «Ленинский комсомол» получила сигарообразный корпус с минимальной верхней палубой и обтекаемую рубку, напоминающую плавник морского животного.
Корпус американского «Наутилуса» похож на дизельных предшественников: заокеанские коллеги изменили внешнюю конструкцию немного позже, использовав наработки эксплуатации первого подводного атомохода.
На этом фоне появилось четкое разделение путей развития АПЛ: американский и советский.
Первая атомная подводная лодка США USS Nautilus
К моменту запуска «Наутилуса» у инженеров США был готов атомный реактор, поэтому они создавали лодку вокруг реактора. Доказанная надежность позволила использовать одну основную силовую установку, дополненную дизельными агрегатами.
Агрегаты заводов Советского Союза создавались в спешке, поэтому К-3 строилась с дублированием силовой установки. Одновременное проектирование агрегатов и самого судна позволило «элегантнее» разместить экипаж и оборудование.
В дальнейшем это привело к принципиальному отличию: у атомных субмарин США всегда один реактор. Российские и советские строились как с одним, так и с двумя реакторами — в зависимости от размеров судна и его назначения.
Как подразделяются и какие задачи выполняют современные АПЛ
Подводные лодки проекта 941 «Акула» рассматривались в роли подводных транспортов
Традиционно среди атомных субмарин выделяют 3 класса и общую категорию специальных кораблей:
1. Многоцелевые лодки (торпедные) — предназначены для уничтожения кораблей и подлодок противника.
2. Лодки с крылатыми ракетами — российские «заточены» для уничтожения авианосцев, американские — для стратегических и тактических неядерных ударов по наземным целям.
3. Стратегические ракетоносцы — предназначены для скрытного автономного плавания с возможностью нанесения ядерного удара, являются силами сдерживания.
4. Специальные суда — спроектированные с нуля либо переоборудованные из боевых судна для выполнения задач исследования морского дна, картографии, задач РЭБ/связи/разведки, прокладывания подводных коммуникаций.
Ракетный подводный крейсер стратегического назначения проекта 667БДР «Кальмар»
Развитие флота во многом заставило объединить первые под названием «многоцелевые АПЛ» благодаря унификации вооружения. Отдельные огромные скоростные «потайные суда» с большой глубиной погружения ещё сохраняются в строю.
Атомные подлодки делят по назначению:
· РПКСН (Ракетный подводный крейсер стратегического назначения). Будучи элементом ядерной триады, эти субмарины несут на борту баллистические ракеты с ядерными боеголовками. Главные цели таких кораблей – военные базы и города противника. В число РПКСН входит новая российская АПЛ 955 «Борей». В Америке этот тип субмарин называют SSBN (Ship Submarine Ballistic Nuclear): сюда относится самая мощная из таких ПЛ – лодка типа «Огайо». Чтобы вместить на борту весь смертоносный арсенал, РПКСН проектируют с учетом требований большого внутреннего объема. Их длина часто превышает 170 м – это заметно больше длины многоцелевых подлодок.
ЛАРК К-186 «Омск» пр.949А OSCAR-II с открытыми крышками пусковых установок ракетного комплекса «Гранит». Лодки проекта во Флоте имеют неофициальное название «Батон» – за форму корпуса и внушительность размеров.
· ПЛАТ (Подводная лодка атомная торпедная). Такие лодки еще называют многоцелевыми. Их предназначение: уничтожение кораблей, других подлодок, тактических целей на земле и сбор разведданных. Они меньше РПКСН и имеют лучшую скорость и подвижность. ПЛАТ могут использовать торпеды или высокоточные крылатые ракеты. К числу таких АПЛ относятся американский «Лос-Анджелес» или советский/российский МПЛАТРК проекта 971 «Щука-Б».
Подводная лодка проекта 941 «Акула»
Американский «Сивулф» считается самой совершенной многоцелевой атомной подводной лодкой. Ее главная особенность – высочайший уровень скрытности и смертоносное вооружение на борту. Одна такая субмарина несет до 50 ракет «Гарпун» или «Томагавк». Также имеются торпеды. Из-за большой дороговизны флот США получил только три таких подлодки.
Подводная лодка проекта 941 «Акула»
· ПЛАРК (Подводная лодка атомная с ракетами крылатыми). Это самая малочисленная группа современных АПЛ. Сюда входят российский 949А «Антей» и некоторые переоборудованные в носители крылатых ракет американские «Огайо». Концепция ПЛАРК перекликается с многоцелевыми АПЛ. Субмарины типа ПЛАРК, правда, крупней – они представляют собой большие плавучие подводные платформы с высокоточным оружием. В советском/российском флоте эти лодки также именуют «убийцами авианосцев».
Эволюция подводных лодок с атомным реактором
Подводная лодка проекта «Лира»
Развитие атомных субмарин подарило человечеству 5 условных поколений, связанных общими конструктивными чертами и логикой применения:
1. Первое поколение стало родоначальником атомных субмарин, но было достаточно многочисленно и долго стояло на вооружении. Основной общей чертой стала наследуемость с дизель-электрическими предшественниками.
Лодки носили скорее экспериментальный характер, часто предназначались для «боевой отработки» конструкторских идей.
2. Второе поколение стало прямым развитием предыдущего с минимальными изменениями и начинает свой отсчёт в 1967 году.
АПЛ поздней постройки получили «рыбообразную» геометрию корпуса (проект 705 «Лира» в СССР) и комплексные автоматизированные систем управления («Аккорд» на той же лодке), ставшим первым прообразом современного центра управлению сложных систем в виде единого пульта.
Атомная подводная лодка проекта 661 «Анчар»
Серьезной заявкой для АПЛ СССР стал родоначальник «охотников за авианосцами» К-162/222 «Золотая рыбка» проекта 661 «Анчар» с полностью титановым корпусом. Субмарина достигла до сих пор не побитый рекорд скорости в 44,74 узлов (80,4 км/ч).
3. Третье поколение появилось в начале восьмидесятых и характеризуется прежде всего существенно возросшим водоизмещением, повышением автономности, улучшением жизнеобитания команды, а так же унификацию субмарин и их классов.
Американские лодки типа «Огайо» и «Лос-Анджелес» получили реакторы, работающие без перезарядки до 11 лет и не требующие серьезного ремонта в течении всего жизненного цикла — до 30 лет.
Наиболее богатый период кораблестроения: большинство из лодок ещё в строю. Многие из них уникальны, например печально известный рекордсмен проекта 685 «Плавник» К-278 «Комсомолец» с двумя титановыми корпусами и глубиной погружения до 1000 метров.
Ракетонесущий крейсер «Огайо» ВМС США
4. Четвертое поколение на данный момент является наиболее современным, начиная свою историю в начале девяностых. В США представлено только многоцелевыми типами.
Эти аппараты объединяет применение водометных движителей («Сивулф», проект 955), звукопоглощающие покрытия нового типа, новые материалы (композит), реакторы длительного срока службы.
После ряда катастроф подводных лодок предыдущего поколения, проекты получили собственные автономные спасательные капсулы и полностью изолированный реактор.
Возросло и было унифицировано вооружение: так, американские лодки научились хранить до 50 крылатых ракет основных используемых ВМС США типов.
5. Перспективное пятое поколение существует только на бумаге, однако предполагается, что будет включать в себя преимущественно многоцелевые субмарины.
Основным изменением станет атомный реактор с запасом энергии на весь жизненный цикл подводной лодки (в США внедряется в лодках четвертого поколения), полностью композитный корпус, а так же унифицированное вооружение.
Одни и те же пусковые установки будут использовать как баллистические, так и крылатые тактические ракеты, а так же иное неядерное вооружение для выполнения широкого спектра задач.
Таблица 5
* Улучшенная модификация, головная АПЛ третьей подсерии. ** По другим данным — 2×30000 л.с.
Применительно к АПЛ (иногда и к ДПЛ) используется достаточно условное, но получившее распространение понятие «поколение». Признаками, по которым АПЛ относят к тому или иному поколению, являются: близость по времени создания, общность заложенных в проекты технических решений, однотипность энергетических установок и другого оборудования общекорабельного назначения, один и тот же корпусный материал и т. п. К одному поколению могут быть отнесены АПЛ различного назначения и даже нескольких следующих одна за другой серий. Переходу от одной серии ПЛ к другой, а тем более — переходу от поколения к поколению предшествуют всесторонние исследования с целью обоснованного выбора оптимальных сочетаний основных тактико-технических характеристик новых АПЛ.
Рис. 11. Новейшая российская многоцелевая АПЛ типа «Барс» (проект 971)
Актуальность такого рода исследований особенно возросла с появлением возможности (благодаря развитию техники) создания АПЛ, существенно различающихся скоростью хода, глубиной погружения, показателями скрытности, водоизмещением, составом вооружения и т. д. Выполнение этих исследований продолжается иногда на протяжении нескольких лет и включает разработку и военно-экономическую оценку для широкого спектра альтернативных вариантов АПЛ — от улучшенной модификации серийно строящейся АПЛ до варианта, представляющего собой синтез принципиально новых технических решений в области архитектуры, энергетики, вооружения, корпусных материалов и т. д.
Как правило, эти исследования не ограничиваются только проектированием вариантов АПЛ, но включают также целые программы научно-исследовательских и опытно-конструкторских работ по гидродинамике, прочности, гидроакустике и другим направлениям, а в некоторых случаях, рассмотренных выше, также и создание специальных опытных АПЛ.
В странах, строящих АПЛ наиболее интенсивно, было создано три-четыре поколения этих кораблей. Например, в США из многоцелевых АПЛ к I поколению относят обычно АПЛ типов «Skate» и «Skipjack», к II — «Thresher» и «Sturgeon», к III — «LosAngeles». АПЛ «Seawolf» рассматривают как представителя уже нового, IV поколения АПЛ ВМС США. Из ракетоносцев к I поколению относят лодки «George Washington» и «Ethan Allen», к II — «Lafayette» и «Benjamin Franklin», к III — «Ohio».
Рис. 12. Современный российский атомный подводный ракетоносец типа «Акула» (проект 941)
В общей сложности к концу 90-х годов в мире было построено (включая выведенные из строя в связи с устареванием и погибшие) около 500 АПЛ. Численность АПЛ по годам в составе ВМС и ВМФ разных стран приведена в табл. 6.
Общее устройство современной АПЛ
Ракетонесущий атомный подводный крейсер проекта 941 «Акула» в разрезе
Среднестатистическую подводную лодку, бороздящую Мировой океан прямо сейчас, можно описать единой концептуальной схемой. Отдельные агрегаты и линии могут меняться, но сама идея остаётся неизменной с семидесятых годов.
Большинство российских субмарин используют два корпуса (отдельные капсулы в общем) – внутренний из мягкого и прочного титана и внешний из маломагнитной стали. Американские используют один многослойный корпус, разделенный переборками. Как и 50 лет назад.
Между корпусами (у АПЛ США – в общем объеме) расположены ёмкости для воды. При их заполнении лодка опускается, откачка поднимает судно на поверхность. Цистерны можно заполнять одновременно или по-очереди.
Кроме основных, есть так называемые дифферентные цистерны: их заполняют для выравнивания лодки после загрузки и при движении груза. Эта система работает все время, даже под водой при горизонтальном движении.
Многоцелевая АПЛ класса «Вирджиния» ВМС США
Существуют также лодки с корпусом смешанного типа (когда легкий корпус перекрывает основной лишь частично) и многокорпусные (несколько прочных корпусов внутри легкого).
Колоссальные АПЛ проекта 941 «Акула», созданные по принципу катамарана, несут внутри легкого корпуса находятся пять прочных корпусов, два из которых являются основными. Для изготовления прочных корпусов использовали титановые сплавы, а для легкого — стальной.
Переборки между отсеками рассчитаны на давление в 10 атмосфер и сообщаются люками, которые можно герметизировать, если это необходимо. Не все отечественные атомные субмарины имеют так много отсеков.
Для справки: многоцелевая АПЛ проекта 971, например, разделена на шесть отсеков, а новый ракетоносец проекта 955 — на восемь.
Отсеки атомной субмарины и их назначение
Многоцелевая атомная подводная лодка проекта 941 в разрезе
Традиционная компоновка включает от 5 до 8 отсеков (дублируются на лодках проекта 941) со своим назначением и определенной конфигурацией, вплоть до использованных материалов.
1. Первый отсек несет торпедные аппараты и сами торпеды на нескольких палубах, поэтому в зависимости от типа и степени автоматизации лодки может быть необитаем и находиться сразу за легким корпусом.
2. Второй отсек чаще всего используется для размещения радиооборудования: здесь находится центральный пульт управления, пульты гидроакустических систем, регуляторы микроклимата и навигационное спутниковое оборудование.
Именно на втором отсеке размещается рубка, используемая для размещения антенн, перископов. Её основная цель — наблюдение из подводного положения.
3. Третий отсек на современных российских подводных лодках проектов 949А и 955 используется в качестве радиосвязного. Многие ранние типы совмещают его с центральным отсеком управления.
4. Четвертый отсек (он же третий на ряде лодок 3-4 поколений) является жилым: тут размещены каюты экипажа, помещения отдыха, камбуз. В нём проводит время основная часть экипажа, не задействованная в работе на данный момент.
Советские и российские АПЛ между этим и последующим отсеком несет дополнительный отсеки для деконтаминации членов экипажа: очистке одежды членов команды, которые работали в отсеке с реакторами.
Ракетные шахты многоцелевых подводных лодок
5. Пятый (шестой на российских АПЛ) отсеки размещают силовую установку. В зависимости от типа реактора, дизель-генераторы могут находится с ним в одном помещении или в раздельной.
На субмаринах пятого поколения, а так же на американских АПЛ «Сивулф» используется герметичная капсула реактора, которая может полностью изолироваться от остальной лодки.
Самые современные субмарины имеют 7 и 8 отсек, где размещается центр управления реактором и турбинная установка с аккумуляторами. Такая компоновка позволяет исключить контакт с реактором.
Так же в последних отсеках может располагаться автономная капсула для спасения экипажа, созданная по типу спускаемого космического аппарата.
Таблица 2
Сплав атомной энергетики и БР межконтинентальной дальности придал подводным лодкам в дополнение к их изначальному преимуществу (скрытности) принципиально новое качество — способность поражать цели в глубине территории противника. Это превратило АПЛ в важнейший компонент стратегических вооружений, занимающий в стратегической триаде едва ли не главное место благодаря своей мобильности и высокой выживаемости.
В конце 60-х годов в СССР были созданы АПЛ принципиально нового типа — многоракетные подводные лодки — носители КР с подводным стартом. Появление и последующее развитие этих АПЛ, не имевших аналогов в зарубежных ВМС(3), явилось реальным противовесом наиболее мощным надводным боевым кораблям — ударным авианосцам, в том числе и с атомными энергетическими установками.
Рис. 10. Атомный подводный ракетоносец (проект 667А)
На рубеже 60-х годов кроме ракетизации возникло еще одно важное направление в развитии АПЛ — повышение их скрытности от обнаружения, в первую очередь другими ПЛ, и совершенствование средств освещения подводной обстановки для опережения противника в обнаружении.
Вследствие особенностей среды, в которой действуют ПЛ, в качестве определяющих факторов в проблеме скрытности и обнаружения выступают обесшумливание ПЛ и дальность действия устанавливаемых на них гидроакустических средств. Именно совершенствование этих качеств наиболее сильно повлияло на формирование того технического облика, который приобрели современные АПЛ.
В интересах решения возникающих в указанных областях задач во многих странах были развернуты беспрецедентные по объему программы научно-исследовательских и опытноконструкторских работ, включающих разработку новых малошумных механизмов и движителей, проведение по специальным программам испытаний серийных АПЛ, переоборудование построенных АПЛ с внедрением на них новых технических решений, наконец, создание АПЛ с энергетическими установками принципиально нового типа. К числу последних относится, в частности, американская АПЛ «Тиllibее», введенная в строй в 1960 г. Эта АПЛ отличалась комплексом мероприятий, направленных на снижение шумности и повышение эффективности гидроакустического вооружения. Вместо главной паровой турбины с редуктором, применяемой в качестве двигателя на серийно строящихся в это время АПЛ, на «Тullibее» была реализована схема полного электродвижения — установлены специальный гребной электродвигатель и соответствующей мощности турбогенераторы. Кроме того, впервые для АПЛ был применен гидроакустический комплекс со сферической носовой антенной увеличенных размеров(4), а в связи с этим и новая схема размещения торпедных аппаратов: ближе к середине длины ПЛ и под углом 10-12° к ее диаметральной плоскости.
При проектировании «Тиllibее» планировалось, что она станет головной в серии АПЛ нового типа, специально предназначенных для противолодочных действий. Однако эти намерения не были реализованы, хотя многие из примененных и отработанных на ней технических средств и решений (гидроакустический комплекс, схема размещения торпедных аппаратов и др.) были сразу распространены на строящихся в 60-х годах серийных АПЛ типа «Thresher».
Вслед за «Тиllibее» для отработки новых технических решений по повышению акустической скрытности были построены еще две опытные АПЛ: в 1967 г. АПЛ «Jack»(5) с безредукторной (прямодействующей) турбинной установкой и соосными гребными винтами противоположного направления вращения (наподобие применяемых на торпедах) и в 1969 г. АПЛ «Narwhal», снабженная атомным реактором нового типа с повышенным уровнем естественной циркуляции теплоносителя первого контура. Этот реактор, как ожидалось, будет отличаться пониженным уровнем шумоизлучений за счет снижения мощности циркуляционных насосов первого контура. Первое из этих решений не получило развития, а что касается нового типа реактора, то полученные результаты нашли применение при разработке реакторов для серийных АПЛ последующих лет постройки.
В 70-х годах американские специалисты вновь вернулись к идее использования на АПЛ схемы полного электродвижения. В 1974 г. было завершено строительство АПЛ «Glenard P. Lipscomb» с турбоэлектричес-кой ЭУ в составе турбогенераторов и электродвигателей(6). Однако и эта АПЛ не была принята для серийного производства. Характеристики АПЛ «Тиllibее» и «Glenard P. Lipscomb» приведены в табл. 3.
Отказ от «тиражирования» АПЛ с полным электродвижением говорит о том, что выигрыш по снижению шумности, если он и имел место на АПЛ этого типа, не компенсировал связанного с внедрением электродвижения ухудшения других характеристик, в первую очередь из-за невозможности создания электродвигателей требуемой мощности и приемлемых габаритов и, как следствие, снижения скорости полного подводного хода по сравнению с близкими по сроку создания АПЛ с турборе-дукторными установками.
Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель
Базовый принцип работы атомного реактора
Главный агрегат, отличающий атомную от дизельной лодку — реактор. В зависимости от его типа, может варьироваться тип привода.
В типичном двигателе с ядерным реактором охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора, превращается в пар и вращает лопасти турбины.
Вал турбины подключается к валу электродвигателя через редуктор для более эффективного преобразования энергии в электрическую.
В свою очередь, вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Одновременно с этим часть электроэнергии запасается в бортовых аккумуляторах.
Рабочий отсек АПЛ
Переход энергии молекул пара в кинетическую энергию лопаток приводит к конденсации пара обратно в воду, которая вновь поступает в реактор.
На этом фоне интересно смотрится количество аварий АПЛ. Всего за историю атомного флота затонуло 8 субмарин: 4 советских, 2 российских, 2 американских. Только одна, USS Thresher (SSN-593) — из-за повреждения корпуса.
Печально известный «Курск» проекта 949А «Антей» стал наиболее известной катастрофой российского флота и едва ли не единственной аварией из-за вооружения. Прочие затонули из-за прямых или косвенных проблем с двигательной установкой.
Вооружение подводных лодок: ядерное и неядерное
Подводный запуск крылатой ракеты «Томагавк»
Первоначально атомные подводные лодки проектировались в качестве носителей стратегического ядерного вооружения: АПЛ должны были незаметно прорвать оборону вероятного противника и нанести неожиданный удар.
Баллистические ракеты АПЛ первого поколения несли моноблочную часть и не отличались большой дальностью и требовали надводный запуск на относительно спокойной воде (при отсутствии бокового ветра).
Лодки США несли по 16 носителей «Поларис» модификаций А1, А2, А3, «Посейдон» С3, «Трайдент 1» С4 с дальностью от 2200 км у А1 до 7400 км у С4. АПЛ Советского Союза несли по 3 ракеты Р-13, впоследствии замененными Р-21 с дальностью всего 650 км и 1420 км.
Пусковые установки баллистических ракет
Второе поколение АПЛ получило ракеты с разделяющейся головной частью (с 3 или с 7 блоками) количеством от 8 до 16 как в СССР, так и в США. Ранние советские ракеты этого поколения Р-29 получили дальность стрельбы 7800 км, более поздние экземпляры Р-29Р — 9000 км/6500 км (моноблок/разделяемая боеголовка).
Третье и четвертое поколение получило от 16 (проект 955) до 24 баллистических ракет (проект 941 «Акула», «Огайо») Р-29РМУ2 «Синева», Р-30 «Булава-30», UGM-133A «Трайдент II» с дальностью до 9-11 тыс. км.
Кроме баллистических ракет, ракетоносцы несут 4-6 торпедных аппаратов калибра 533 или 650 мм для самообороны и запуска специализированных средств: акустических буёв, мин, спецсредств.
Схема подводного запуска баллистической ракеты с подводной лодки типа «Огайо»
Неядерное (условно, многие управляемые боеприпасы имеют или имели разработанную ядерную боеголовку) вооружение атомных лодок с ранних этапов было представлено как торпедами средних и больших калибров, так и крылатыми ракетами.
«Аметист» и «Малахит» в шахтах стали первым оружием, запускаемым из-под воды. Сегодня их заменяют «Гарпун», «Томагавк» («Сифвулф») и «Калибр», «Оникс», «Циркон» (российские лодки проекта 855 «Ясень»).
Интересно: знаменитые российские низколетящие гиперзвуковые ракеты создавались именно для подводных лодок и сначала предназначались для уничтожения кораблей.
Запуск баллистической ракеты UGM-133 Trident-II
Начиная с четвертого поколения АПЛ-охотников оснастили универсальными пусковыми устройствами с барабанными «магазинами» для запуска торпед, крылатых ракет, а так же ракет класса «поверхность-поверхность».
Им на смену приходят унифицированные варианты для упрощенного запуска из торпедных аппаратов: двигатель ракеты при таком запуске включается далеко от АПЛ, а первая стадия запуска происходит как у торпеды, сжатым воздухом.
Таблица 1
*Равно сумме надводного водоизмещения и массы воды в полностью заполненных цистернах главного балласта. **Для американских АПЛ (здесь и далее) испытательная глубина, которая близка по смыслу к предельной.
Рис. 6. Первая отечественная серийная АПЛ (проект 627 А)
контуре атомного реактора. Наряду с водой, имеющей высокую степень очистки, которая была применена в реакторах первых АПЛ, была предпринята попытка применить для этой цели металл или сплав металлов, имеющих относительно низкую температуру плавления (натрий и др.). Преимущество такого теплоносителя виделось конструкторам, прежде всего, в возможности снизить давление в первом контуре, повысить температуру теплоносителя и в целом получить выигрыш по габаритам реактора, что чрезвычайно важно в условиях его применения на ПЛ.
Рис. 7. Первая американская АПЛ «Nautilus»
Эта идея была реализована на второй после «Nautilus» американской АПЛ «Seawolf», построенной в 1957 г. На ней был применен реактор S2G с жидкометаллическим (натриевым) теплоносителем. Однако на практике преимущества жидкометаллического теплоносителя оказались не столь существенными, как ожидалось, а по надежности и
Рис. 8. Первая отечественная АПЛ «Ленинский комсомол» (проект 627)
сложности эксплуатации этот тип реакторов существенно уступал водо-водяному реактору (с водой под давлением в первом контуре).
Уже в 1960 г. вследствие ряда выявившихся при эксплуатации неполадок реактор с жидкометаллическим теплоносителем на АПЛ «Seawolf» был заменен водо-водяным реактором S2WA, представлявшим собой улучшенную модификацию реактора АПЛ «NautiIus».
В 1963 г. в СССР в состав флота была введена АПЛ проекта 645, также оснащенная реактором с жидкометаллическим теплоносителем, в котором был использован сплав свинца с висмутом. В первые годы после постройки эта АПЛ успешно эксплуатировалась. Однако решительных преимуществ перед параллельно строящимися АПЛ с водо-водяными реакторами не показала. Вместе с тем эксплуатация реактора с жидкометаллическим теплоносителем, особенно его базовое обслуживание, вызывала определенные сложности. Серийное строительство АПЛ этого типа не производилось, она осталась в единичном экземпляре и находилась в составе флота до 1968 г.
Вместе с внедрением на ПЛ АЭУ и непосредственно связанного с ними оборудования произошло изменение и других их элементов. Первая американская АПЛ, хотя и имела большие размеры, чем ДПЛ, мало отличалась от них по внешнему виду: она имела штевневую носовую оконечность(1) и развитую надстройку с протяженной плоской палубой. Форма корпуса первой отечественной АПЛ уже имела ряд характерных отличий от ДПЛ. В частности, ее носовой оконечности были приданы хорошо обтекаемые в подводном положении обводы, имеющие в плане очертания полуэллипса и близкие к круговым поперечные сечения. Ограждение выдвижных устройств (2)(перископов, устройства РДП, антенн и др.), а также шахты люка и мостика были выполнены в виде обтекаемого тела наподобие лимузина, откуда пошло название «лимузинная» форма, ставшая впоследствии традиционной для ограждения у многих типов отечественных АПЛ.
Для максимального использования всех возможностей по улучшению тактико-технических характеристик, обусловленных применением АЭУ, были развернуты исследования по оптимизации формы корпуса, архитектуре и конструкции, управляемости при движении в подводном положении с высокими скоростями, автоматизации управления при этих режимах, по навигационному обеспечению и обитаемости в условиях длительного подводного плавания без всплытия на поверхность.
Ряд вопросов решался с использованием специально построенных опытных и экспериментальных неатомных и атомных ПЛ. В частности, в решении проблем управляемости и ходкости АПЛ важную роль сыграла построенная в США в 1953 г. экспериментальная ДПЛ «Аlbасоrе», имевшая форму корпуса, близкую к оптимальной в отношении минимизации сопротивлению воды при движении в подводном положении (отношение длины к ширине составляло около 7,4). Ниже указаны характеристики ДПЛ «Albacore»:
Размерения, м: длина………………………………………………………………………………….62,2 ширина…………………………………………………………………………………8,4 Водоизмещение, т: надводное…………………………………………………………………………..1500 подводное………………………………………………………………………….1850 Энергетическая установка: мощность дизель — генераторов, л. с…………………………………..1700 мощность электродвигателя *, л. с……………………….около 15000 число гребных валов…………………………………………………………….1 Скорость полного подводного хода, уз……………………………………….33 Испытательная глубина погружения, м……………………………………..185 Экипаж, чел……………………………………………………………………………….52
* С серебряно-цинковой аккумуляторной батареей.
Эта ПЛ несколько раз переоборудовалась и длительное время использовалась для отработки гребных винтов (в том числе соосных противоположного вращения), органов управления при движении с высокими скоростями, новых типов ТА и решения других задач.
Внедрение на ПЛ АЭУ совпало по времени с разработкой ряда принципиально новых образцов вооружения: крылатых ракет (КР) для стрельбы по берегу и для поражения морских целей, позднее — баллистических ракет (БР), средств дальнего радиолокационного обнаружения воздушных целей.
Успехи в области создания БР наземного и морского базирования привели к пересмотру роли и места как сухопутных, так и морских систем вооружения, что нашло отражение и в становлении типажа АПЛ. В частности, постепенно утратили свое значение КР, предназначенные для стрельбы по берегу. В результате США ограничились постройкой всего одной АПЛ «Halibut» и двух ДПЛ — «Grayback» и «Grow-ler» — с КР «Regulus», а построенные в СССР АПЛ с КР для поражения береговых целей были впоследствии переоборудованы в АПЛ только с торпедным вооружением.
В единичном экземпляре осталась и построенная в США в эти годы АПЛ радиолокационного дозора «Triton», предназначенная для дальнего обнаружения воздушных целей с помощью особо мощных радиолокационных станций. Эта ПЛ примечательна еще и тем, что из всех американских АПЛ она была единственной, имевшей два реактора (все остальные АПЛ США однореакторные).
Первый в мире пуск БР с подводной лодки был произведен в СССР в сентябре 1955 г. Ракета Р-11 ФМ была запущена с переоборудованной ДПЛ из надводного положения. С той же ПЛ спустя пять лет был произведен первый в СССР пуск БР из подводного положения.
С конца 50-х годов начался процесс внедрения БР на ПЛ. Сперва была создана малоракетная атомная ПЛ (габариты первых отечественных морских БР на жидком топливе не позволили создать сразу многоракетную АПЛ). Первая отечественная АПЛ с тремя стартующими из надводного положения БР была введена в строй в 1960 г. (к этому времени было построено несколько отечественных ДПЛ с БР).
В США, базируясь на успехах, достигнутых в области морских БР, сразу пошли на создание многоракетной АПЛ с обеспечением старта ракет из подводного положения. Этому способствовала успешно реализуемая в те годы программа создания БР на твердом топливе «Polaris». Причем для сокращения срока строительства первого ракетоносца был использован корпус находящейся в это время в постройке серийной АПЛ
Рис. 9. Атомный подводный ракетоносец типа «George Washington»
с торпедным вооружением типа «Skipjack». Этот ракетоносец, названный «George Washington», вступил в строй в декабре 1959 г. Первая отечественная многоракетная АПЛ (проект 667А) с 16 БР, стартующими из подводного положения, вступила в строй в 1967 г. В Великобритании первый атомный ракетоносец, созданный при широком использовании американского опыта, был введен в строй в 1968 г., во Франции — в 1974 г. Характеристики первых АПЛ с БР приведены в табл. 2
В годы, последовавшие с момента создания первых ПЛ, происходило непрерывное совершенствование этого нового вида морского вооружения: увеличение дальности полета морских БР до межконтинентальной, повышение темпа стрельбы ракетами вплоть до залповой, принятие на вооружение БР с разделяющимися головными частями (РГЧ), имеющими в своем составе несколько боевых блоков, каждый из которых может наводиться на свою цель, увеличение на некоторых типах ракетоносцев боекомплекта ракет до 20—24.
Эксплуатация атомных подводных лодок
Сухой док для обслуживания АПЛ типа «Огайо»
Появление атомных подводных заставило пересмотреть применение и ремонт подобных типов судов: их подводная часть имеет неподходящие для обычных портов габариты, а реакторы опасны.
Учитывая, что большая часть задач связана с длительным скрытным применением у берегов вероятного противника, поход так же должен начинаться в потайном месте — иначе лодки можно будет отслеживать с начала пути.
Аналогичные рассуждения, необходимость защиты АПЛ от вероятного удара противника, необходимость защиты окружения от возможных проблем с реакторами/вооружением привели к появлению уникальных закрытых баз размером с мегаполис.
Схема подземной базы атомных подводных лодок в Балаклавской бухте
Первая появилась в Балаклавской бухте, заняв собой колоссальную площадь отдельными помещениями, связанными туннелями и каналами: ракеты отдельно, боеголовки отдельно, лодки отдельно.
Ремонт — так же в спецзонах, так как 1-3 поколению лодок требовалась не только замена топлива, но и замена активной зоны реактора. Аналогичные комплексы были созданы уже над водой для каждого океанского флота: в Северодвинске, в Заполярье, в бухте Чажма.
АПЛ США повезло больше: военно-морская база Кингс-Бей вместила всю необходимую инфраструктуру, включая учебные центры и заводы по модернизации в одном месте с погодными условиями, исключающими проблемы во время ремонтных или погрузочных работ.
Российская база подводных лодок
Специализированные базы используются только для длительных остановок АПЛ, ремонта и погрузки ядерных материалов. Все остальное время атомные субмарины снабжаются с плавучих причалов (СССР), судов снабжения (Россия и США), оставаясь почти все время в открытом море.
Современные многоцелевые лодки часто используют обычные военно-морские порты для короткого базирования, уходя на специальные базы только при необходимости — вероятность радиоактивного загрязнения среды при их эксплуатации низкая.
От чего зависит автономность АПЛ?
Атомные подводные лодки и суда сопровождения
Появление ядерного реактора и увеличение объема корпуса подводных лодок после появления атомного реактора на борту позволили кратно в сравнении с дизельными субмаринами увеличить полезную нагрузку.
Вместе с тем — и длительность автономного хода. Считается, что продолжительность автономного похода, как называется одиночное плавание АПЛ, может достигать полугода: примерно столько занимает задача патрулирования берегов вероятного противника.
Причем многие из современных АПЛ до половины этого времени способны находиться под водой. И весь срок не пополнять запасы ни с берега, ни с судов поддержки.
Тем не менее, средний срок похода подводного флота всех государств составляет около 2-3 месяцев.
В зоне отдыха АПЛ проекта 941
Из них не менее четверти времени проходит в надводном состоянии, и не менее половины — в прямой близости с кораблями огневой поддержки и судами снабжения, которые объединяются с АПЛ в единую боевую (патрульную/учебную) группу.
Срок похода ограничивается исходя из опыта эксплуатации, на котором основан запас питания, фильтров для получения пресной воды и чистого воздуха.
Дело в том, что основной сдерживающий фактор длительных автономных походов АПЛ — психологический. Человеку слишком тяжело долгое время находится в замкнутом пространстве узким коллективом.
Кроме того, плавание атомной субмарины требует постоянного контроля и множество типовых работ, расслабляться некогда. В противном случае существовали бы суда, годами находящиеся под водой.
Истории подводных войск России
На протяжении всей своей жизни Россия была военной державой, поэтому нет ничего удивительного в том, что правительство решило не отставать от всего мира и в свой флот зачислила в 1903 году первое подводное судно, что положило основу подводного флота.
Первые проекты подводных лодок
«Дельфин» считается первой полноценной подлодкой самой большой страны мира, до неё была ещё «Петр Кошка», но она была очень маленькой, и служила только маленьким судном для скрытого проникновения на территорию противника и высадки разведки. В 1904 года первая подводная лодка России достроилась, а в мае этого года она уже ходила в море. Все проверки она проходила в Балтийском море, после чего была переправлена железнодорожными путями во Владивосток, где была призвана на военные действия между Японией и Россией.
Петр Кошка 1901 год
Лейтенант М. Н. Беклемишев являлся старшим помощником по электротехнике, и в 1901 году он был отправлен в командировку в США, где присутствовал на первом пробном погружении в воду подлодки «Fulton», а также ему было дозволено осмотреть иностранное судно. После данной поездки лейтенант заявил, что отечественное судно качественно не уступает американским, а несколько конструкторных решений и вовсе уникальны. Также поездка дала ориентир Беклемишеву на сбор команды в «Дельфин», в первой подводной лодке России состоял экипаж из 10 человек, где был один командир со своим помощником, 4 специалиста по минному делу, а также по два рулевых и машинистов. Каждый служащий субмарины был добровольцем из которых и выбирал старший помощник.
Все технические характеристики подводной лодки российской империи разумеется были не на уровне современных суден:
- Скорость наводная/подводная: 9/6 узлов
- Уровень погружения: 50 метров
- Водоизмещение надводное/подводное: 113/до 135 тонн
- Длинна/ширина: 20/3,66 метров
- Вооружена была двумя торпедами 1898 года
Поначалу конструкторы хотели поставить дизельный двигатель, но затем комиссия решила остановить свой выбор на бензине.
На войне «Дельфин» ходил 17 дней по просторам моря, а также попал в поход на 8 суток. В 1916 году его отправили вновь на север в Мурманск, а в следующем году, в августе он был исключен из флота, в 1920 году его отдали на слом.
Главная заслуга судна была вовсе не военная, а то, что он дал старт всему подводному кораблестроению и послужил прототипом для будущих подлодок.
Что ждёт атомные подводные лодки в будущем?
Атомная исследовательская субмарина «Лошарик»
Самые современные российские подводные лодки проекта «Хаски» ещё только проектируются, но уже сейчас понятно, что они наследуют многие из идей, реализованных в судах четвертого поколения, эксплуатирующихся США:
- модульный реактор, выполненный в отдельном отсеке, не требующим обслуживания;
- ёмкость топливных элементов на 20-30 лет, то есть на всю эксплуатацию;
- автономную спасательную капсулу для всех членов экипажа.
Вероятно, организация пространства таких лодок будет создаваться с оглядкой на проект «Лошарик»: уникальную АПЛ для исследования океанского дна, чей корпус состоит из отдельных шарообразных модулей, из-за чего навевает ассоциации с одноименным советским фильмом.
Отсек АПЛ проекта 941 «Акула»
Уже сегодня понятно, что дублирование реакторных систем останется, а основным движителем станет водомёт, управляемый вторичным электрическим двигателем во время основной работы, и напрямую реакторной турбиной — на скоростном марше.
Стоит ожидать и полностью автоматизированных систем управления, которые позволят сконцентрировать экипаж в одном наиболее защищенном модуле без необходимости постоянных переходов в рабочие отсеки.
Как будет выглядеть такая атомная подводная лодка? Увидим. Но у неё будет очень много общего с космическими кораблями, которые полетят спустя какое-то время.
P.S. Мировой Океан — не менее опасный мир, чем космос. И только атомные подводные лодки приближают нас к грядущим открытиям.
(
217 голосов, общий рейтинг: 4.83 из 5)